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Chapter 1

Optimization Theorem

De�nition 1 Let x � Rn, "-neiborhood of x is N"(x) = fy 2 Rnj kx� yk � "g:

De�nition 2 Let S � Rn, if S contains an "-neiborhood of each of its point. Then S is open.

Theorem 3 Let S � Rn, if for each x 2 S, 9 " > 0 such that N"(x) � S. Then S is open

Theorem 4 Let S � Rn, if S = Int(S). Then S is open

De�nition 5 Let S � Rn, if its complement �S = Rn � S is open. Then S is closed

Theorem 6 Let S � Rn, if S = Closure(S). Then S is closed

De�nition 7 Let S � Rn, if 9 " > 0, such that N"(x) � S. Then x is interior point of S. (Int(S): set
of all interior point of S)

De�nition 8 Let S � Rn, if for each " > 0 , N"(x) containts a point in S and a point not in S. Then x
is boundary point of S. (@S: set of all boundary point of S)

De�nition 9 Let S � Rn, the closure of S is the union of S and boundary points of S. (Closure(S) =
S [ @S)

De�nition 10 If 9m > 0 such that S � fx 2 Rnj kxk � mg. Then S � Rn is bounded

De�nition 11 If it is closed and bounded. Then S � Rn is compact

Theorem 12 Weierstrass Theorem: A continuous function de�ned on a compact set S � Rn attain a
mimimum on S.

1.1 General Condition

Generally, if we have objective function, which is di¤erentiable at most points, then we can use FOC to
�nd the candidate point for local and global minimum. Because the local and global minimum only
occurse at the following cases: the boundary point, discontinuous points, continuous but undi¤erentiable
points, and FOC points.

Theorem 13 (Neccessary condition for interior solution optimization) Consider f : C ! R. If x� is an
interior local maximum/minimum of f and f is di¤erentiable at x�. Then

rf(x�) = 0
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1.1. GENERAL CONDITION M. M. Wei

Theorem 14 (Transformation) Consider any function f : C ! R, where C 2 Rn. Let h : R ! R be
any strictly decreasing/increaseing function. Then x� minimize/maximize f on C i¤ x� minimize/maximize
f̂ = h � f on C

Theorem 15 1(Su¢ cient condition for optimization) Let the mathematical programming problem is de�ned
as follows (

min
x2S

f(x)

S is convex set

)
Then:

f(x) convex strictly convex
�x local min �x global min �x unique global min
rf(�x) = 0 �x global min �x unique global min

f(x) quasi-convex strictly quasi-convex strong quasi-convex
�x local min NA �x global min �x unique global min
rf(�x) = 0 NA NA NA

f(x) pseudo-convex strictly pseudo-convex
�x local min �x global min �x unique global min
rf(�x) = 0 �x global min �x unique global min

This above theorem only state when the local minimum can be generalized to global minimum, but it
does not say relationship between FOC and local minimum.

Theorem 16 (Avriel, 1976:146) If f is quasi-convex on a convex set and x is a strict local minimum, then
x is a strict global minimum.

De�nition 17 If f is a convex function and S is a convex set, then this mathematical programming is a
convex program

Theorem 18 Characterist of a global min: consider the convex program:(
min
x2S

f(x)

S is convex set; f(x) is convex function on S

)

then, we have the following properties:
a. �x is a global minimal i¤ 9 a subgradient � at �x such that �t(x� �x) � 0 for 8x 2 S;
b. if f is di¤erentiable, then �x is a global minimal i¤ rf(�x)(x� �x) � 0 for 8x 2 S;
c. if rf(�x) = 0, then �x is global minimal; (if, at �x , 9 a subgradient � = 0, then �x is global minimal);
d. if �x is local minimal, and �x 2 int(S), then rf(�x) = 0. (if �x is local minimal, and �x 2 int(S), then 9

a subgradient � = 0 at �x. )

Theorem 19 Consider the convex program:(
min
x2S

f(x)

S is convex set; f(x) is convex function on S

)

If S is compact, then 9 an extreme point optimal solution. (If f is strictly convex, then it is NOT
neccessary the extrem point is unique.)

1Some textbook and notes use strongly quasi-convex as de�nition for strictly quasi-convex function
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1.2. GEOMETRIC OPTIMALITY CONDITION M. M. Wei

1.2 Geometric Optimality Condition

De�nition 20 For mathematical programming:(
min
x2S

f(x)

S � Rn; S 6= �

)

Let �x 2 S, the improving direction set at �x is de�ned as F = fd 2 Rnjf(�x+�d) < f(�x) for 8� 2 (0; �)
for some � > 0g;
Let �x 2 S, the feasible direction set at �x is de�ned as D = fd 2 Rnjd 6= 0, �x+ d� 2 S for 8� 2 (0; �)

for some � > 0g;

Claim 21 If f is di¤erentiable at �x, then improving direction set at �x is de�ned as F0 = fd 2 Rnjf(�x)td <
0g. (clearly, F0 � F )

Theorem 22 For mathematical programming:

min
x2S

f(x)

Let �x 2 S, if �x is local minimum, then F \D = �. (There is no feasible improvming direction)

Theorem 23 For mathematical programming:(
min
x2S

f(x)

f is Psudo-convex function; S be convex set

)

Let �x 2 S, then F \D = � )
by continuity

F0 \D = �) �x is local minimal) �x is global minimal.

De�nition 24 For mathematical programming:(
min
x2S

f(x)

S = fx 2 Rnjgi(x) � 0; i = 1; :::;mg and gi(x) is di¤erentiable

)

Let �x 2 S, then the index set of binding constraints at �x is de�ned as I = fijgi(�x) = 0g. And the
feasible direction set at �x is de�ned as G0 = fd 2 Rnjrgi(�x) < 0 for 8i 2 Ig;

Claim 25 G0 � _D

Claim 26 Let gi, i = 1; :::;m be strictly psudo-convex, then G0 = _D.

Claim 27 If gi(x) is quasi-convex functions, then S is convex set.

Theorem 28 For mathematical programming:8><>:
min
x2S

f(x)

S = fx 2 Rnjgi(x) � 0; i = 1; :::;mg, gi(x) is strictly Psudo-convex
f is psudo-convex

9>=>;
Let �x 2 S, then F \D = � )

by continuity
F0 \G0 = �) �x is local minimal) �x is global minimal
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1.3. FRITZ-JOHN OPTIMALITY CONDITION M. M. Wei

1.3 Fritz-John Optimality Condition

Theorem 29 (Fritz-John Optimality condition: Neccessary)For mathematical programming:8><>:
min
x2S

f(x)

S = fx 2 Rnjgi(x) � 0; i = 1; :::; ng; f and gi(�x); i 2 I is di¤erentiable
gi(�x); i =2 I, continuous

9>=>;
Let �x 2 S and I = fijgi(�x) = 0g. If �x is local minimum, then 9u0, ui, i 2 I such that the following holds:8><>:

u0rf(�x) +
P
i2I

uirgi(�x) = 0

u0 � 0; ui � 0 for i 2 I�
u0

ui;i2I
�
6= 0

9>=>;
(PS: if u0 6= 0, we then can refer to KKT condition.)(PS2: proof base on seperation theorem: Farkas�

Lemma.)

Claim 30 F0 \G0 = � at �x i¤ �x is Fritz-John point. (Gorden�s Theorem)

Claim 31 If rf(�x) = 0 then �x is a Fritz-John point.

Claim 32 If 9k 2 I such that rgk(�x) = 0, then �x is a Fritz-John point.

Claim 33 If exist a set of multiplier ui, i 2 I such that
P
i2I

uirgi(�x) = 0, and ui are not all zero, then �x is

a Fritz-John point.

Claim 34 If �x is local minimum, then �x is a Fritz-John point.

Claim 35 If �x is a Fritz-John point, then �x is NOT neccessarily local minimum. (Can be in�ection point)

Theorem 36 (Fritz-John Optimality condition: Su¢ cient)For mathematical programming:8><>:
min
x2S

f(x)

S = fx 2 Rnjgi(x) � 0; i = 1; :::; ng; f and gi(�x); i 2 I is di¤erentiable
gi(�x); i =2 I, continuous

9>=>;
Let �x 2 S and I = fijgi(�x) = 0g. Let S0

denotes relaxed feasible region for this problem in which the
nonbinding constraints are dropped.
a). If there exists a N"(�x) such that f(x) is psudo-convex over N"(�x) \ S

0
and gi(�x); i 2 I, are strictly

psudo-convex over N"(�x) \ S
0
, then �x is a local minimal.

b). If f(x) is psudo-convex at �x and gi(�x); i 2 I, are both strictly psudo-convex and quasi-convex at �x,
then �x is global optimal solution.

1.4 KKT Optimality Condition

Theorem 37 KKT condition = F-J condition + u0 > 0

Theorem 38 (KKT condition for Inequality Constraint: neccessary)For mathematical programming:8><>:
min
x2S

f(x)

S = fx 2 Rnjgi(x) � 0; i = 1; :::; ng; f and gi(�x); i 2 I is di¤erentiable
gi(�x); i =2 I, continuous

9>=>;
Let �x 2 S and I = fijgi(�x) = 0g. If �x is local minimum and one Constraint Quali�cation, CQ, holds,

then 9ui, i 2 I, such that the following holds:

rf(�x) +
X
i2I

uirgi(�x) = 0, ui � 0
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1.4. KKT OPTIMALITY CONDITION M. M. Wei

Claim 39 Constraint Quali�cation:
a). rgi(�x), i 2 I, are linearly independent;
b). G0 6= 0;
c). gi(�x) is linear; (Abaidie�s CQ)
d). Exit a strict interrial point
e). ...

Claim 40 If �x is local minimum, then �x is NOT neccessarily a KKT point. (For example, if rgi(�x), i 2 I,
are linearly dependent, then

P
i2I

uirgi(�x) = 0 for some ui) (Neccessary condition needs some CQs)

Claim 41 Suppose we have a convex program, if �x is a global minimum, then �x is NOT neccessarily a KKT
point. (For example, only one fesible point and rgi(�x) are dependent.) (Neccessary condition needs some
CQs)

Claim 42 If �x is a KKT point, then �x is NOT neccessarily a local minimum. (For example, �x is saddle
point and no binding constraints.)

Claim 43 Suppose we have a convex program, if �x is a KKT point, then �x is a global minimum.

Theorem 44 Let G
0

0 = fd 2 Rnjd 6= 0,rgi(�x)td � 0 for 8i 2 Ig, then Fo \G
0

0 = � at �x i¤ �x is KKT point.
(By Farkas�Lemma)

Theorem 45 (KKT condition for Inequality Constraint: su¢ cient)For mathematical programming:8><>:
min
x2S

f(x)

S = fx 2 Rnjgi(x) � 0; i = 1; :::; ng; f and gi(�x); i 2 I is di¤erentiable
gi(�x); i =2 I, continuous

9>=>;
Let �x 2 S is a KKT point and I = fijgi(�x) = 0g. Let S

0
denotes relaxed feasible region for this problem

in which the nonbinding constraints are dropped.
a). If there exists a N"(�x) such that f(x) is psudo-convex over N"(�x) \ S

0
and gi(�x); i 2 I, are quasi-

convex over N"(�x) \ S
0
, then �x is a local minimal.

b).If f(x) is psudo-convex at �x and gi(�x); i 2 I, are quasi-convex at �x, then �x is global optimal solution.

Theorem 46 (KKT neccessary condition for Inequality & Equality Constraint)For mathematical program-
ming: 8>><>>:

min
x2S

f(x)

gi(x) � 0; i = 1; :::; n
hj(x) = 0; j = 1; :::; l

f , hj(x), and gi(�x), i 2 I, is di¤erentiable; gi(�x), i =2 I, continuous

9>>=>>;
Let �x 2 S and I = fijgi(�x) = 0g. If �x is local minimum and one Constraint Quali�cation, CQ, holds,

then 9ui, i 2 I, such that the following holds:

rf(�x) +
X
i2I

uirgi(�x) +
Xl

j=1
�vjrhi(�x) = 0, ui � 0

Claim 47 Constraint Quali�cation:
a). rgi(�x), i 2 I, are linearly independent;
b). ...
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1.5. DUALITY THEORY & SADDLE POINT OPTIMALITY THEOREM M. M. Wei

Theorem 48 (KKT condition for speacial function form: su¢ cient) Let the mathematical programming is
de�ned as follows: 8>><>>:

Min f(x)
gi(x) � 0; i = 1; :::;m
hj(x) = 0; j = 1; :::; l

f convex; gi(x) convex; hj(x) linear; all function di¤erentiable

9>>=>>;
If the following KKT condition holds for �x:8><>:

Primal Feasibility condition: gi(�x)�0; i=1;:::;m
hj(�x)=0; j=1;:::;l

Dual Feasibility condition:rf(�x)+
Pm

i=1 �uirgi(�x)+
Pl

j=1 �vjrhi(�x)=0
�ui�0;i=1;:::;m

Complementary Slackness condition: �uigi(�x) = 0; i = 1; :::;m

9>=>;
Then, �x is global minimal point.

1.5 Duality Theory & Saddle Point Optimality Theorem

Let the original problem de�ned as follows:

(P ):

8>>>><>>>>:
Min f(x)

g(x) =

0@ g1(x)
:::

gn(x)

1A � 0

x 2 S � Rm

9>>>>=>>>>;
De�ne the duality problem as follows:

(D):

8><>:
Max �(u)
u � 0

where �(u) =Min
x2S

ff(x) + utg(x)g

9>=>;
Theorem 49 (Bazaraa, Sherali, and Shetty:Theorem6.3.1)The dual function, �(u) =Min

x2S
ff(x) + utg(x)g,

is concave function.

Theorem 50 (Bazaraa, Sherali, and Shetty:Theorem6.3.3) If S is compact, f and g be continuous, the
optimal solutions to the dual function is singleton. Then dual function is di¤erentiable at u with ru�(u) =
g(x�(u)). (x�(u) is the optimal solution function for the dual function.)

Theorem 51 (Weak Duality Theorem) If �x is feasible to (P ) and �u is feasible to (D), then �(�u) � f(�x).
(�(�u) is lower bound for original problem; f(�x) is upper bound for the dual problem)

Claim 52 If �x is feasible to (P ) and �u is feasible to (D) and �(�u) = f(�x), then �x solves (P ) and �u solves
(D).

Claim 53 If (D) objective is unbounded (goes to 1), then (P ) is infeasible.

Claim 54 If (P ) objective is unbounded (goes to �1), then �(u) = �1 for 8u � 0.

Theorem 55 (Strong Duality Theorem) If f(x) and g(x) are convex functions and S is convex set, and
9�x 2 S such that g(x) < 0, then there is no duality gap. (9�x 2 S such that g(x) < 0 sever as Slater�s CQ)

Theorem 56 (Saddle Point Optimality Theorem: SPOT) De�ne the Lagraingian Function L(x; u) = f(x)+
utg(x). If there exist �x 2 S and �u � 0 such that L(�x; u) � L(�x; �u) � L(x; �u) for 8x 2 S and 8u � 0, then �x
solves (P ) and �u solves (D).
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1.5. DUALITY THEORY & SADDLE POINT OPTIMALITY THEOREM M. M. Wei

Claim 57 (Relationship with KKT point): If f(x) and g(x) are convex functions, then if �x is KKT point,
then (�x; �u) satis�es the SPOT.

Claim 58 (Relationship with KKT point): If �x 2 Int(S), then if (�x; �u) satis�es the SPOT, then �x is KKT
point.
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Chapter 2

Value Function and Solution Function
Properties Under Optimization

2.1 Value Function properties

Theorem 59 Non-negative weighted maximum: f = maxfw1f1; :::; wnfng where f1; :::; fn are convex; w1; :::; wn
are non-negative. Then f is convex.

Theorem 60 Non-negative weighted maximum: f = maxfw1f1; :::; wnfng where f1; :::; fn are quasi-convex;
w1; :::; wn are non-negative. Then f is quasi-convex.

Theorem 61 Non-negative weighted maximum: f = maxfw1f1; :::; wnfng where f1; :::; fn are supermodular;
w1; :::; wn are non-negative. Then f is supermodular.

Theorem 62 If Y is a nenempty set and f(�; y) is a quasi-convex function on a convex set X for every
y 2 Y . Then g(x) = sup

y2Y
f(x; y) is a quasi-convex function on X.

Theorem 63 (Preservation under minimization) Let f(x; y) : X � Y (x) ! R. If Y (x) is a nonempty set
for every x 2 X, X is convex set, and (X;Y (x)) is convex set, f(x; y) is quasi-convex function on (X;Y (x)),
g(x) > �1 for 8x 2 X. Then g(x) = inf

y2C
f(x; y) in convex on X. (In Heyman and Sobel, 1984:525, it state

the same result with more strong condition by requiring f(x; y) be convex)

Theorem 64 (Preservation under maximization)(Heyman and Sobel, 1984:525) Let f(x; y) : X � Y ! R.
If Y is non-empty and X is convex set, f(�; y) is convex function on a convex set X for each y 2 Y . Then
g(x) = sup

y2Y
f(x; y) in convex on X.

Theorem 65 (Envelope Theorem) For the following parameterized mathematical programming(
Min
x

f(x; r)

s.t. gi(x; r) = 0; i = 1; :::;M

)
Let v(r) denotes the value function of this problem: v(r) is the optimal value attained by f(�) when the

parameter verctor is r. Let x(r) denotes the optimal solution of this problem: x(r) is the optimal solution
which solve min f(�) when the parameter verctor is r. Let �(r) be the lagrange multipliers associated with the
minimizer solution x(r) at r. If v (r) is di¤erentiable1 , then

@v(r)

@ri
=
@f(x(r); r)

@ri
�
XM

m=1
�m(r)

@gm(x(r); r)

@ri
for i = 1; :::; N

1The di¤erentiability requires additional condition: e.g. x (r) is singleton. For detailed treatment, refer to "Milgrom - 1999
- The Envelope Theorems"
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2.2. SOLUTION FUNCTION PROPERTIES M. M. Wei

(PS: for inequality constraint, this still holds due to the KKT condition that require CS condition)

Remark 66 The continuity of the value function v(r) is garrenteed by the fact that f(x; r) is continuous in
r.

Theorem 67 (Theorem 1 of Paul Milgrom 1999: The envelope theorems) V (t) = maxx2K f(x; t) and
t 2 [0; 1]. Let K � X be non-empty and compact and suppose that for all t, f (�; t) : K ! R is upper
semi-continuous. Further assume that the partial derivative ft (x; t) exists and is a continuous function of
(x; t). Then
a) V has bounded right-hand and left-hand derivatives on [0; 1) and (0; 1], respectively, and these are

given by the formulas:
V

0

+ (t) = max
x2x�(t)

ft (x; t) and V
0

� (t) = min
x2x�(t)

ft (x; t)

b). V is almost everywhere di¤erentiable on (0; 1) and whereever the derivative exists,

V 0 (t) = ft (x (t) ; t) for any x (t) 2 x� (t)

c) for every mt2 [0; 1] and any selection x (t) from x� (t),

V (t) = V (0) +

Z t

0

ft (x (s) ; s) ds

Remark 68 This theorem implies that whenever x� (t) is singleton (e.g. if f (�; t) is strict concave function,
then x� (t) must be singleton/unique), then V (t) is di¤erentiable.

Theorem 69 (Corollary 5 of Paul Milgrom 1999: The envelope theorems) V (t; s) = maxx f (x; t) subject
to g (x; s) � 0. Suppose that, for all s, K (s), the feasible set of x, is non-empty and compact. Suppose that
for all t and s, the functions f (�; t) : X ! R and g (�; s) : X ! RN are continuous and concave. In addition,
assume that (i) f (�; t) is strictly concave and (ii) the partial derivative ft (x; t) exists and is a continuous
function of (x; t). Then, Vt (t; s) exists and satis�es Vt (t; s) = ft (x

� (t; s) ; t).

Theorem 70 (Theorem 6 of Paul Milgrom 1999: The envelope theorems) V (t; s) = maxx2X f (x; t) subject
to g (x; s) � 0 (By saddle point theorem, V (t; s) = min��0maxx2X (f (x; t) + � � g (x; s))). Suppose that,
for all s, K (s), the feasible set of x, is interior of X, non-empty, and compact. Suppose that for all t and
s, the functions f (�; t) : X ! R and g (�; s) : X ! RN are continuous and concave. In addition, assume
that (i) f (�; t) is strictly concave; (ii) the partial derivative gs (x; s) exists and are a continuous function of
(x; t); and (iii) for all s, t 2 (0; 1) and x 2 X, fx (x; t) and gx (x; s) exist and gx (x; s) has full row rank.
Then, the solutions �� and x� exist and are singletons, and Vs (t; s) exists on the interval (0; 1) and satis�es
Vs (t; s) = �� (t; s) � gs (x� (t; s) ; s), where x� (t; s) = x� (�� (t; s) ; t; s).

2.2 Solution Function properties

Theorem 71 (P115, 7.6, Porteus 2002) Suppose that f1 and f2 are both di¤erentiable functions de�ned on
R that have �nite minimizers, S1 and S2, respectively, and that f

0

1 � f
0

2. Then,
1. If S1 and S2 are unique minimizers, then S1 � S2;
2. In general, here exist minimizers, say S�1 and S

�
2 , of f1 and f2, respectively, that are �nite and satisfy

S�1 � S�2 .

Theorem 72 (Theorem 2 of Nachbar Monotone Comparative statistics) Let f : R2 ! R, let C � R, and
for each � 2 R, let �(�) be the set of solutions, assumed non-empty, to the problem

max
x2C

f(x; �)

If f is supermodular then �(�) is weakly increasing.
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2.2. SOLUTION FUNCTION PROPERTIES M. M. Wei

Theorem 73 (Theorem 3 of Nachbar Monotone Comparative statistics: for general case: multivariable
case) Let f : RN+M ! R, let C � RN , and for each � 2 RM , let �(�) be the set of solutions, assumed
non-empty, to the problem

max
x2C

f(x; �)

If f is supermodular in x and exhibits increasing di¤erences in (x; �) then �(�) is weakly increasing.

Theorem 74 (Theorem 4 of Nachbar Monotone Comparative statistics) Let f : RN+M ! R, let C � RN ,
and for each � 2 RM , let �(�) be the set of solutions, assumed non-empty, to the problem

max
x2C

f(x; �)

If f is quasi-supermodular in x and satis�es the single crossing property in (x; �) then �(�) is weakly
increasing.

Theorem 75 (Theorem 5 of Nachbar Monotone Comparative statistics) Let f : R2 ! R, let C � R be an
interval, and for each � 2 R, let �(�) be the set of solutions, assumed non-empty, to the problem

max
x2C

f(x; �)

If f satis�es the interval order dominance then �(�) is weakly increasing.
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Chapter 3

Separation Theorem

Theorem 76 (Closest Point Theorem) Let x � Rn, S 6= �, and S closed and convex; let y =2 S, then 9 a
unique point �x 2 S that is a minimum distance from y. Furthermore, (y � �x)t(x� �x) � 0 for 8 x 2 S.

De�nition 77 Let S1, S2 � Rn, let H = fx 2 RnjP tx = �g. H separate S1and S2 if P tx � � for 8
x 2 S1 and P tx � � for 8 x 2 S2. H is called a separate hyperplane.

De�nition 78 Let S1, S2 � Rn, let H = fx 2 RnjP tx = �g. H proper separate S1and S2 if P tx < �
for 8 x 2 S1, P tx > � for 8 x 2 S2, and S1[ S2 * H.

De�nition 79 Let S1, S2 � Rn, let H = fx 2 RnjP tx = �g. H strict separate S1and S2 if P tx < � for
8 x 2 S1 and P tx > � for 8 x 2 S2.

De�nition 80 Let S1, S2 � Rn, let H = fx 2 RnjP tx = �g. H strong separate S1and S2 if P tx � �
for 8 x 2 S1 and P tx � �+ " for 8 x 2 S2.

Theorem 81 Let x � Rn, S 6= �, and S closed and convex; let y =2 S, then 9 a hyperplane that strongly
separate y and S.

De�nition 82 H is a supporting hyperplane to S at �x if S � fx 2 RnjP t(x � �x) � 0g or S � fx 2
RnjP t(x� �x) � 0g.

Notes: the closest point theorem also constracte a supporting hyperplane to S at �x.

Theorem 83 Let x � Rn, S 6= �, and S closed and convex; let �x 2 @S, then 9 a supporting hyperplane at
�x.

Theorem 84 Let x � Rn, S 6= �, and S closed and convex; let y =2 S, then 9 a hyperplane that separates
y and S.

Theorem 85 (Farkas�Lemma)Exactly one of the following is ture:
I: Ax � 0; ctx > 0 for some x 2 Rn. (c does not lie in the cone generated by the rows of A)
II: Aty = c; y � 0 for some y 2 Rm. (c can be writen as non-negative combination of the columns of At

or rows of A�lies in the cone generated by the row of A)

Theorem 86 (Gordarn�s Theorem)Exactly one of the following is ture:
I: Ax < 0 for some x 2 Rn. (9x that made an obscule angle with each row of A)
II: Aty = 0, y � 0 for some non-zero y 2 Rm.

12



Chapter 4

Optimal Control Theory

4.1 The Calculus of Variations (From Kirk 2004 and Friesz 2008)

4.1.1 Basics

De�nition 87 A functional J is a rule of correspondence that assigns to each function x in a certain class

 a unique real number. 
 is called the domain of the functional, and the set of real numbers associated
with the functions in 
 is called the range of the functional. (The domian of a functional is a class of
functions; a functional is a "function of a function".)

De�nition 88 J is a linear functional of x if and only if it satis�es the principle of homogeneity

J (�x) = �J (x)

for all x 2 
 and for all real numbers � such that �x 2 
, and the principle of additivity

J
�
x(1) + x(2)

�
= J

�
x(1)

�
+ J

�
x(2)

�
for all x(1), x(2), and x(1) + x(2) in 
.

De�nition 89 The norm of a function is a rule of correspondence that assigns to each function x 2 
,
de�ned for t 2 [t0; tf ], a real number. The norm of x, denoted by kxk, satis�es the following properties:
1. kxk � 0 and kxk = 0 if and only if x (t) = 0 for all t 2 [t0; tf ];
2. k�xk = j�j kxk for all real numbers �;
3.


x1 + x2

 � 

x1

+ 

x2

.

(to compare the closeness of two functions y and z that are de�ned for t 2 [t0; tf ], let x (t) = y (t)� z (t).
if kxk if zero/small/large, then two functions are identical/close/far-apart.)
(E.g. one acceptable norm for x can be de�ned as kxk = max

t0�t�tf
fjx (t)jg)

De�nition 90 If x and x+ �x are functions for which the functional J is de�ned, then the increment of
J , denoted by �J , is

�J = �J (x; �x)
�
= J (x+ �x)� J (x) .

Also, �x is called the variation of the function x.

Remark 91 1). �x does NOT mean � � x. � is not a scalar. Rather �x is a new admissible function near x,
and the shape and property of �x and x can be di¤erent.
2). �x (tf ): the variation of x (tf ): the change of xtf due to the change of function form of x (�), while

keeping time tf unchanged;

13



4.1. THE CALCULUS OF VARIATIONS (FROM KIRK 2004 AND FRIESZ 2008) M. M. Wei

_x (tf ) �tf : linear approximation of change of xtf due to the change in time tf while keeping the function
form x (�) unchanged;

�xtf : the linear approximation of the change of xtf ;
Hence, the relationship between those three terms are

�xtf = �x (tf ) + _x (tf ) �tf (4.1)

. (PS: In Friesz 2010, this relationship is writen as dx (tf ) = �x (tf ) + _x (tf ) dtf .)
Because �xtf = �x (tf )+ _x (tf ) �tf , �x (tf ) and dtf is not free. In particular, �x (tf ) depends on dtf . (e.g.

Kirk 2004 page 135-136 has example of linear relationship between those two.) (e.g. think this way: if we �x
the total change constant, then �x (tf ) will depends on dtf .) However, �xtf and dtf will be independent, and,
hence, out of the integral we often collect terms in the form of �xtf and dtf in calculus of variations.(e.g.
Kirk 2004 page 139)

3). �x is used when analyize the variation of x which is a function in integral, such as if J =
Z tf

t0

f (x (t)) dt,

then �J =
Z tf

t0

fx (x (t)) �xdt. However, when x is a function of a point variable u, we will use du to rep-

resent the change of this point variable, such as if J = g (x (u)), then �J = gx (x (u))
@x(u)
@u du. Remember,

we only express �x to represent the function form changes only when x is in an integral. (of course, �x may
be transfered out by some methods such as integrate by part, e.g. Euler�s equation or in the analysis below
of "Continuous Time Optimal Control (From Friesz 2008)" section. However, after transfer �x out of the
integral into a point function, we need to use dx (u) = �x (u)+ _x (u) du to express �x (u) as dx (u)� _x (u) du,
where _x (u) du and dx (u) are independent.)

De�nition 92 The increment of a functional can be written as

�J (x; �x) = �J (x; �x) + g (x; �x) � k�xk ,

where �J is linear in �x. If
lim

k�xk!0
fg (x; �x)g = 0,

then J is said to be di¤ erentiable on x and �J is the variation of J evaluated for the function x.
(The variation of J , �J , is the linear approximation to the di¤erence in the functional J caused by two

comparion curves, �J .)

Theorem 93 Chain rule for the calculus of variations (T. Friesz�s note: chapter 3): Let J (X) =
Z tf

t0

g
�
X (t) ; _X (t) ; t

�
dt,

then the variation of this functional will obeys

�J (X) =
nX
i=1

Z tf

t0

��
@

@xi
g
�
X (t) ; _X (t) ; t

��
�xi +

�
@

@ _xi
g
�
X (t) ; _X (t) ; t

��
� _xi

�
dt.

De�nition 94 A functional J with domain 
 has a relative extremum at x� if there is an " > 0 such that
for all functions x in 
 which satisfy kx� x�k < " the increment of J has the same sign. If

�J = J (x)� J (x�) � 0,

J (x�) is a relative minimum; if
�J = J (x)� J (x�) � 0,

J (x�) is a relative maximum.
If the condition is satis�ed for arbitrarily large ", then J (x�) is a global, or absolute, minimum/maximum.

x� is called an extremal, and J (x�) is referred to as an extremum.

14



4.1. THE CALCULUS OF VARIATIONS (FROM KIRK 2004 AND FRIESZ 2008) M. M. Wei

4.1.2 Necessary conditions in the Calculus of Variations

Theorem 95 (The fundamental theorem of the calculus of variations) Let x be a vector function of t in the
class 
, and J (x) be a di¤erentiable functional of x. Assume that the functions in 
 are not constrained by
any boundaries. If x� is an extremal, the variation of J must vanish on x�; that is,

�J (x�; �x) = 0 for all admissible �x.1

Lemma 96 Vanishing integral property (T. Friesz�s note: chapter 3): If  2 C0 [a; b], continuous function
in [a; b], and if, for all � 2 C1 [a; b], function has �rst order derivative in [a; b], such that � (a) = � (b) = 0,
we have Z b

a

 (t)
d� (t)

dt
dt = 0,

then  (t) = c, a constant, for all t 2 [a; b] 2 R1.

Lemma 97 Fundamental lemma (T. Friesz�s note: chapter 3): If g 2 C0 [a; b] and h 2 C0 [a; b], and if, for
all � 2 C1 [a; b] such that � (a) = � (b) = 0, we haveZ b

a

h
g (t)� (t) + h (t) _� (t)

i
dt = 0,

then

g (t)� dh (t)

dt
= 0, for t 2 [a; b] .

Lemma 98 (The fundamental lemma of the calculus of variations) If a function h is coninuous andZ tf

t0

h (t) �x (t) dt = 0

for every function �x that is continuous in the interval [t0; tf ], then h must be zero everywhere in the interval
[t0; tf ].

Remark 99 By adopting the Fundamental lemma, we haveZ tf

t0

��
@

@x
g (x (t) ; _x (t) ; t)

�
�x+

�
@

@ _x
g (x (t) ; _x (t) ; t)

�
� _x

�
dt = 0)

@

@x
g (x (t) ; _x (t) ; t)� d

dt

�
@

@ _x
g (x (t) ; _x (t) ; t)

�
= 0

where the last equation is a form of Euler equation (Euler-Lagrange equation). (When both boundary
times and boundary values are �xed, then �J (X) = 0 is equivalent to the Euler equation.)

Remark 100 The second form of the Euler euqation (the second formEuler-Lagrange equation): By
chain rule, we have

dg

dt
=
@g

@t
+
@g

@x

dx

dt
+
@g

@ _x

d _x

dt
d

dt

�
_x
@g

@ _x

�
=
@g

@ _x

d _x

dt
+ _x

d

dt

�
@g

@ _x

�
. By combining those two equations, we have

_x

�
@g

@x
� d

dt

�
@g

@ _x

��
+
d

dt

�
_x
@g

@ _x

�
� dg

dt
+
@g

@t
= 0.

Therefore, if x is a solution of the Euler equation, then

d

dt

�
_x
@g

@ _x
� g

�
+
@g

@t
= 0,

which is known as the second form of the Euler equation.
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Remark 101 If @g@t = 0, then, form the second form of the Euler equation, it is immediate that
d
dt

�
_x @g@ _x � g

�
=

0. In other words, _x @g@ _x � g = c0, a constant, and this expression is Beltrami�s identity.

Lemma 102 Nonegativity of a functional (T. Friesz�s note: chapter 3): Let g 2 C0 [a; b], h 2 C0 [a; b], and
� 2 C1 [a; b]; suppose also that � (a) = � (b) = 0. A necessary condition for the functional

F =

Z b

a

�
g (t) f� (t)g2 + h (t)

n
_� (t)

o2�
dt

to be nonnegative for all � is that
h (t) � 0, for 8t 2 [a; b] .

Theorem 103 (T. Friesz�s note: chapter 3) A necessary condtion for x to minimize J (x) in the problem
de�ned by 8<: min

�
J (x) =

Z tf

t0

g (x (t) ; _x (t) ; t) dt

�
s:t:t0, tf , x (t0) = x0, and x (tf ) = xf are �xed

9=;
is that
1). Legendre�s condition: _x (t) is continuouse,

@2g (x (t) ; _x (t) ; t)

@ ( _x (t))
2 � 0, for all t 2 [t0; tf ] .

or 2). Euler�s equation: _x (t) is continuouse,

@

@x
g (x (t) ; _x (t) ; t)� d

dt

�
@

@ _x
g (x (t) ; _x (t) ; t)

�
= 0, for all t 2 [t0; tf ] .

or 3). The second form of Euler�s equation: _x (t) is continuouse,

d

dt

�
_x
@g

@ _x
� g

�
+
@g

@t
= 0, for all t 2 [t0; tf ] .

or 4). Weierstrass condition: _x (t) is continuouse, and, for all admissible y and all t 2 [t0; tf ],

g (x (t) ; _y (t) ; t)� g (x (t) ; _x (t) ; t)�
�
@

@ _x
g (x (t) ; _x (t) ; t)

�
( _y (t)� _x (t)) � 0

or 5) Weierstrass-Erdman conditions (corner conditions): when _x (t) has a jump discontinuity at time
t1, then, for all t 2 [t0; tf ], we must have�

@

@ _x
g (x (t) ; _x (t) ; t)

�
t=t�1

=

�
@

@ _x
g (x (t) ; _x (t) ; t)

�
t=t+1�

g (x (t) ; _x (t) ; t)� _x
@

@ _x
g (x (t) ; _x (t) ; t)

�
t=t�1

=

�
g (x (t) ; _x (t) ; t)� _x

@

@ _x
g (x (t) ; _x (t) ; t)

�
t=t+1

Remark 104 When the boundary conditions are free, e.g. x (t0) or/both x (tf ), when, besides the Euler-
equation, we need include free endpoint conditions (naural boundary conditions)

�
@
@ _xg (x (t) ; _x (t) ; t)

�
t=tf

=

0 or/and
�
@
@ _xg (x (t) ; _x (t) ; t)

�
t=t0

= 0.
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4.1. THE CALCULUS OF VARIATIONS (FROM KIRK 2004 AND FRIESZ 2008) M. M. Wei

4.1.3 Su¢ cient conditions in the Calculus of Variations

Theorem 105 (T. Friesz�s note: chapter 3) A su¢ cient condtion for x to minimize J (x) in the problem
de�ned by 8<: min

�
J (x) =

Z tf

t0

g (x (t) ; _x (t) ; t) dt

�
s:t:t0, tf , x (t0) = x0, and x (tf ) = xf are �xed

9=;
is that
1. g (x (t) ; _x (t) ; t) is convex with respect to (x (t) ; _x (t)) for all t 2 [t0; tf ];
and 2. x (t) is an admissible function, and satis�es the Euler equation every where except possibly at

points of jump discontinuity of its time derivative wherer it satis�es the Weierstrass-Erdman conditions;
Then x (t) is a solution to the problem.

Remark 106 When the boundary conditions are free, e.g. x (t0) or/both x (tf ), when, besides the Euler-
equation, we need include free endpoint conditions (naural boundary conditions)

�
@
@ _xg (x (t) ; _x (t) ; t)

�
t=tf

=

0 or/and
�
@
@ _xg (x (t) ; _x (t) ; t)

�
t=t0

= 0.

4.1.4 Solutions for unconstraint optimization problem

Solution 107 (Single function) if J (x) =
Z tf

t0

g (x (t) ; _x (t) ; t) dt, then a necessary condition for optimality

will be

0 = �J (x�; �x)

,

0 =

�
@g (x (t) ; _x (t) ; t)

@ _x

�
�x (t) jtft0 +

Z tf

t0

�
@g

@x
g (x (t) ; _x (t) ; t)� d

dt

�
@g (x (t) ; _x (t) ; t)

@ _x

��
�x (t) dt.

where
@g

@x
g (x (t) ; _x (t) ; t)� d

dt

�
@g (x (t) ; _x (t) ; t)

@ _x

�
= 0

is oftern called the Euler equation, which always satisi�ed under optimality. Other boundary conditions
includes:
1. when t0, tf , x (t0) = x0, and x (tf ) = xf are �xed:

h
@g(x(t); _x(t);t)

@ _x

i
�x (t) jtft0 = 0 automatically, and,

besides the Euler equation, we need boundary conditions: x (t0) = x0 and x (tf ) = xf ;

2. when t0, tf , and x (t0) = x0 are �xed, and x (tf ) is free:
h
@g(x(t); _x(t);t)

@ _x

i
�x (t) jtft0 =

h
@g(x(tf ); _x(tf );tf )

@ _x

i
�x (tf ),

and, besides the Euler equation, we need boundary conditions: x (t0) = x0 and
@g(x(tf ); _x(tf );tf )

@ _x = 0;
3. when t0, x (t0) = x0, and x (tf ) = xf are �xed, and tf is free:

�J (x�; �x) =

8><>:
n
g (x (tf ) ; _x (tf ) ; tf )�

h
@g(x(tf ); _x(tf );tf )

@ _x

i
_x (tf )

o
�tf

+

Z tf

t0

�
@g
@xg (x (t) ; _x (t) ; t)�

d
dt

h
@g(x(t); _x(t);t)

@ _x

i�
�x (t) dt

9>=>; = 0

, so, besides the Euler equation, the boundary conditions will be: x (t0) = x0, x (tf ) = xf , and g (x (tf ) ; _x (tf ) ; tf )�h
@g(x(tf ); _x(tf );tf )

@ _x

i
_x (tf ) = 0.

4. when t0 and x (t0) = x0 are �xed, and tf and x (tf ) are free:

�J (x�; �x) =

8>>>><>>>>:

h
@g(x(tf ); _x(tf );tf )

@ _x

i
�xf

+
n
g (x (tf ) ; _x (tf ) ; tf )�

h
@g(x(tf ); _x(tf );tf )

@ _x

i
_x (tf )

o
�tf

+

Z tf

t0

�
@g
@xg (x (t) ; _x (t) ; t)�

d
dt

h
@g(x(t); _x(t);t)

@ _x

i�
�x (t) dt

9>>>>=>>>>; = 0
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, so, besides the Euler equation, the boundary conditions will be: x (t0) = x0, g (x (tf ) ; _x (tf ) ; tf )�
h
@g(x(tf ); _x(tf );tf )

@ _x

i
_x (tf ) =

0, and @g(x(tf ); _x(tf );tf )
@ _x = 0. The last condition, the transversality condition, implicitly assume tf and x (tf )

is unrelated. However if tf and x (tf ) is related by x (tf ) = � (tf ), then the transversality condition is
@g(x(tf ); _x(tf );tf )

@ _x

�
d�
dt (tf )� _x (tf )

�
+ g (x (tf ) ; _x (tf ) ; tf ) = 0.

Solution 108 (Multiple independent functions: there is no constraint relationship among functions.)When
functionals contain several independent functions and their �rst derivatives

J (x1; :::; xn) =

Z tf

t0

g (x1 (t) ; :::; xn (t) ; _x1 (t) ; :::; _xn (t) ; t) dt,

the optimality conditions will include the Euler equation

@

@xi
g (x1 (t) ; :::; xn (t) ; _x1 (t) ; :::; _xn (t) ; t)

� d

dt

�
@

@ _xi
g (x1 (t) ; :::; xn (t) ; _x1 (t) ; :::; _xn (t) ; t)

�
= 0 for all t 2 [t0; tf ] and i = 1; :::; n.

and boundary conditions in the following table:

Remark 109 If _x (t) can be discountinuous, then we need to include the Weierstrass-Erdmann corner con-
ditions, besides Euler equation and boundary conditions.

4.1.5 Solutions for constraint optimization problem

Assume that the admissible curves are smooth.

Point constraints. 8<: min

�
J (W ) =

Z tf

t0

g
�
W (t) ; _W (t) ; t

�
dt

�
s:t: F (W (t) ; t) = 0, for t 2 [t0; tf ]

9=;
where W is an vector of (m+ n) functions, and F (W (t) ; t) is an vector of n functionals.
In order to solve this problem, we need to de�ne a Lagrange functional:

Ja (W;P ) =

Z tf

t0

ga

�
W (t) ; _W (t) ; P (t) ; t

�
dt

_=

Z tf

t0

n
g
�
W (t) ; _W (t) ; t

�
+ PT (t) [F (W (t) ; t)]

o
dt

The variation of this functional Ja can be writen as

�Ja (W; �W;P; �P )

=

Z tf

t0

( h
@
@W gTa

�
W (t) ; _W (t) ; P (t) ; t

�
� d

dt

h
@
@ _W

gTa

�
W (t) ; _W (t) ; P (t) ; t

�ii
�W (t)

+
�
FT (W (t) ; t)

�
�P (t)

)
dt

=

Z tf

t0

8>><>>:
24 @

@W gT
�
W (t) ; _W (t) ; t

�
+ PT (t)

h
@
@W F

�
W (t) ; _W (t) ; t

�i
� d
dt

h
@
@ _W

gT
�
W (t) ; _W (t) ; t

�
+ PT (t)

h
@
@ _W

F
�
W (t) ; _W (t) ; t

�ii 35 �W (t)

+
�
FT (W (t) ; t)

�
�P (t)

9>>=>>; dt
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Hence, the necessary condition for optimality will be:

1:Point Constraints (n equations): F
�
W (t) ; _W (t) ; t

�
= 0

2:Euler�s Equation (m+ n equations):
@

@W
gTa

�
W (t) ; _W (t) ; P (t) ; t

�
� d

dt

�
@

@ _W
gTa

�
W (t) ; _W (t) ; P (t) ; t

��
= 0

for all t 2 [t0; tf ].

Di¤erential Equation Constraints.8><>: min

�
J (W ) =

Z tf

t0

g
�
W (t) ; _W (t) ; t

�
dt

�
s:t: F

�
W (t) ; _W (t) ; t

�
= 0, for t 2 [t0; tf ]

9>=>;
where W is an vector of (m+ n) functions, and F

�
W (t) ; _W (t) ; t

�
is an vector of n functionals.

In order to solve this problem, we need to de�ne a Lagrange functional:

Ja (W;P ) =

Z tf

t0

ga

�
W (t) ; _W (t) ; P (t) ; t

�
dt

_=

Z tf

t0

n
g
�
W (t) ; _W (t) ; t

�
+ PT (t)

h
F
�
W (t) ; _W (t) ; t

�io
dt

The variation of this functional Ja can be writen as

�Ja (W; �W;P; �P )

=

Z tf

t0

( h
@
@W gTa

�
W (t) ; _W (t) ; P (t) ; t

�
� d

dt

h
@
@ _W

gTa

�
W (t) ; _W (t) ; P (t) ; t

�ii
�W (t)

�
�
FT (W (t) ; t)

�
�P (t)

)
dt

=

Z tf

t0

( h
@
@W gT

�
W (t) ; _W (t) ; t

�
+ PT (t)

�
@
@W F (W (t) ; t)

�
� d

dt

h
@
@ _W

gT
�
W (t) ; _W (t) ; t

�ii
�W (t)

�
�
FT (W (t) ; t)

�
�P (t)

)
dt

Hence, the necessary condition for optimality will be:

1:Point Constraints (n equations): F (W (t) ; t) = 0

2:Euler�s Equation (m+ n equations):
@

@W
gTa

�
W (t) ; _W (t) ; P (t) ; t

�
� d

dt

�
@

@ _W
gTa

�
W (t) ; _W (t) ; P (t) ; t

��
= 0

for all t 2 [t0; tf ].

Isoperimetric Constraints.8>><>>:
min

�
J (W ) =

Z tf

t0

g
�
W (t) ; _W (t) ; t

�
dt

�
s:t:

Z tf

t0

ei

�
W (t) ; _W (t) ; t

�
dt = ci, for t 2 [t0; tf ] (i = 1; :::; r)

9>>=>>;
where W is an vector of (m+ n) functions.
To begin with, de�ne new variables

zi (t) =

Z t

t0

ei

�
W (t) ; _W (t) ; t

�
dt, i = 1; :::; r,

and with boundary condition
zi (tf ) = ci, i = 1; :::; r.
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Hence, constraints can be rewriten as

ei

�
W (t) ; _W (t) ; t

�
� _zi (t) = 0, for t 2 [t0; tf ] (i = 1; :::; r)

zi (tf )� ci = 0, for t 2 [t0; tf ] (i = 1; :::; r)

De�ne E
�
W (t) ; _W (t) ; t

�
and _Z (t) to be an vector of (r) functionals of ei

�
W (t) ; _W (t) ; t

�
and _zi (t).

In order to solve this problem, we need to de�ne a Lagrange functional:

Ja (W;P ) =

Z tf

t0

ga

�
W (t) ; _W (t) ; P (t) ; _Z (t) ; t

�
dt

_=

Z tf

t0

n
g
�
W (t) ; _W (t) ; t

�
+ PT (t)

h
E
�
W (t) ; _W (t) ; t

�
� _Z (t)

io
dt

Hence, the necessary condition for optimality will be:

1:Variable Constraints (r + r equations):

(
E
�
W (t) ; _W (t) ; t

�
� _Z (t) = 0, for t 2 [t0; tf ]

Z (tf )� C = 0

)

2:Euler�s Equation (m+ n+ r equations):

8<:
@
@W gTa

�
W (t) ; _W (t) ; P (t) ; t

�
� d

dt

h
@
@ _W

gTa

�
W (t) ; _W (t) ; P (t) ; t

�i
= 0

@
@Z g

T
a

�
W (t) ; _W (t) ; P (t) ; t

�
� d

dt

h
@
@ _Z
gTa

�
W (t) ; _W (t) ; P (t) ; t

�i
= 0

9=;
for all t 2 [t0; tf ].
In which

@

@Z
gTa

�
W (t) ; _W (t) ; P (t) ; t

�
� d

dt

�
@

@ _Z
gTa

�
W (t) ; _W (t) ; P (t) ; t

��
= 0

,
_P (t) = 0

4.2 Continuous Time Optimal Control: analysis of variation ap-
proach (Pontryagin minimum principle) (From Friesz 2008)

Consider the following canonical form of the continuous time optimal control problem8>>>>>>>><>>>>>>>>:

min

�
J (x (t) ; u (t)) = K (x (tf ) ; tf ) +

Z tf

t0

f0 (x (t) ; u (t) ; t) dt

�
s:t:

State dynamics: _x (t) = f (x (t) ; u (t) ; t)
Initial conditions: x (t0) = x0 2 Rm
Terminal conditions: 	(x (tf ) ; tf ) = 0

Control constraints: u (t) 2 


9>>>>>>>>=>>>>>>>>;
OCP

where x (t) = (x1 (t) ; :::; xn (t))
T , u (t) = (u1 (t) ; :::; um (t))

T , f0 : Rn �Rm ! R1, f : Rn �Rm �R1 ! Rn,
K : Rn �R1 ! R1, and 	 : Rn �R1 ! R1. (the initial time, terminal time, and their corresponding values
may be unknowns.) Also, we assume this OCP problem is regular.

De�nition 110 Regularity for OCP problem: We shall say optimal control problem OCP de�ned above is
regular provided f0 (�), 	(�), K (�), and f (�) are everywhere once continuously di¤erentiable with respect to
their arguments.

De�nition 111 Admissible control trajectory: we say that the control trajectory u (t) is admisible relative
to OCP if it is piecewise continuous for all time t 2 [t0; tf ] and u 2 
.
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4.2. CONTINUOUS TIME OPTIMAL CONTROL: ANALYSIS OF VARIATION APPROACH
(PONTRYAGIN MINIMUM PRINCIPLE) (FROM FRIESZ 2008) M. M. Wei

First need to obtain the Lagrangean by endogenize those constrains:

L = K (x (tf ) ; tf ) + v
T	(x (tf ) ; tf ) +

Z tf

t0

�
f0 (x; u; t) + �

T [f (x; u; t)� _x]
	
dt

Using the calculus of variations, the variation of the Lagrangean L will be

�L = �t (tf ) dtf +�x (tf ) dx (tf ) Variations of the constraint
+ f0 (tf ) dtf � f0 (t0) dt0 Variations of integral part w.r.t. time

+

Z tf

t0

�
Hx�x+Hu�u� �T � _x

�
dt Variations of integral part w.r.t. functions

where

H (x; u; �; t) � f0 (x; u; t) + �
T f (x; u; t)

� (tf ) = K (x (tf ) ; tf ) + v
T	(x (tf ) ; tf )

f0 (t0) = f0 (x (t0) ; u (t0) ; t0)

f0 (tf ) = f0 (x (tf ) ; u (tf ) ; tf )

In �L, the term
Z tf

t0

�
��T � _x

�
dt can be transformed into the following by using integrating by parts and

equation (4.1): Z tf

t0

�
��T � _x

�
dt = �T (t0) �x (t0)� �T (tf ) �x (tf ) +

Z tf

t0

�
d�T

dt
�x

�
dt

= �T (t0) (dx (t0)� _x (t0) dt0)

� �T (tf ) (dx (tf )� _x (tf ) dtf )

+

Z tf

t0

�
d�T

dt
�x

�
dt

So,
�L =

�
�t (tf ) + f0 (tf ) + �

T (tf ) _x (tf )
�
dtf Variations of the terminal time

+
�
�Tx (tf )� �T (tf )

�
dx (tf ) Variations of the terminal value

�
�
f0 (t0) + �

T (t0) _x (t0)
�
dt0 Variations of the initial time

+ �T (t0) dx (t0) Variations of the initial value

+

Z tf

t0

hh
Hx + _�

i
�x
i
dt Variations of function x

+

Z tf

t0

[[Hu] �u] dt Variations of function u

Remark 112 The above analysis of �L does not assume �xed boundary time and value. However, if the
boundary times t0 or/and tf are �xed, then dt0 or/and dtf will be zero. If the boundary values are �xed
x (t0) or/and x (tf ) are �xed, then dx (t0) or/and dx (tf ) will be zero.

By the fundamental theorem of the calculus of variations, the neccessary condition for optimality is that
�L need to vanish for admissible x and u, which requires coe¢ cients of each variations to be zero. Hence,
we have the following necessary conditions for optimality:

Theorem 113 When there is no explicit constraint on control variable u (e.g. 
 = Rm), the necessary
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conditions for optimality are

Necessary Conditions Corresponding terms Names in Literature

�t (tf ) + f0 (tf ) + �
T (tf ) _x (tf ) = 0 Free terminal time Terminal time condition 2

�Tx (tf )� �T (tf ) = 0 Free terminal value Transversality condition
f0 (t0) + �

T (t0) _x (t0) = 0 Free initial time Initial time condition 1
�T (t0) dx (t0) = 0 Free initial value Initial time condition 2

Hx + _� = 0 Function x Adjoint equations
Hu = 0 Function u Minimum principle
Huu � 0 Legendre-Clebsch condition

, and together with constraints:

Constraints of the original problem Constraints�names

_x (t) = f (x (t) ; u (t) ; t) State dynamics
x (t0) = x0 Initial conditions

	(x (tf ) ; tf ) = 0 Terminal conditions

Remark 114 1). When the control variable u is unconstraint (e.g. 
 = Rm), Legendre-Clebsch condi-
tion, Huu � 0, must be satis�ed as well. Intuitively, this means that the second derivative of local minimue
point must be positive.
2). If the boundary times t0 or/and tf are �xed, then we do not need "Initial time condition 1" or/and

"Terminal time condition 2".
3). If the boundary values x (t0) or/and x (tf ) are �xed, then we do not need "Initial time condition 2"

or/and "Transversality condition".

Theorem 115 When there is explicit and pure control constraints on control variable u such that u 2 

and 
 is convex, the necessary conditions for optimality are

Necessary Conditions Corresponding terms Names in Literature

�t (tf ) + f0 (tf ) + �
T (tf ) _x (tf ) = 0 Free terminal time Terminal time condition 2

�Tx (tf )� �T (tf ) = 0 Free terminal value Transversality condition
f0 (t0) + �

T (t0) _x (t0) = 0 Free initial time Initial time condition 1
�T (t0) dx (t0) = 0 Free initial value Initial time condition 2

Hx + _� = 0 Function x Adjoint equations
Hu (u� u�) � 0, for 8u 2 
 Function u Minimum principle / Variational inequality

, and together with constraints:

Constraints of the original problem Constraints�names

_x (t) = f (x (t) ; u (t) ; t) State dynamics
x (t0) = x0 Initial conditions

	(x (tf ) ; tf ) = 0 Terminal conditions
u (t) 2 
 Control constraints

Remark 116 1). If the boundary times t0 or/and tf are �xed, then we do not need "Initial time condition
1" or/and "Terminal time condition 2".
2). If the boundary values x (t0) or/and x (tf ) are �xed, then we do not need "Initial time condition 2"

or/and "Transversality condition".
3). From dynamic programming approach, �(t) = Vx(x; t)jx=x�(t), where V (x; t) is the value function

starting with state x and from time t onward. Hence, �(t) can be interpreted as per unit change in the
objective function for a small change in x�(t).
4). From dynamic programming approach, the Hamilton-Jacobi-Bellman equation,HJB equation, is 0 =
min

u(s)2
(s)
fH(x; u; Vx; t) + Vtg, which can be restated as H(x�(t); u�(t); �(t); t) � H(x�(t); u; �(t); t) for all

u 2 
(t), which is equivalent to the variational inequality we de�ned above.
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Theorem 117 Restricted Mangasarian su¢ ciency theorem: Suppose 1). there is no terminal time con-
ditions (no 	(x (tf ) ; tf ) = 0); 2). K (x (tf ) ; tf ) = 0; 3). t0, tf , and x0 are �xed; 4). The Hamiltonian
H is jointly convex in x and u for all admissible solutions; 5). the set of feasible controls 
 is convex;
6). Regularity condition is satis�ed. Then any solution of the continuous-time optimal control necessary
conditions is a global minimum.

Remark 118 This su¢ cient condition can be extended to include terminal condition and non-trivial salvage
function.

Theorem 119 Arrow Su¢ ciency conditions (Sethi 2005 & Friesz 2010): Let u�(t), and the correspond-
ing x�(t) and ��(t) satisfy the necessary conditions, for all t 2 [0; T ]. Then u� is an optimal control if
H0(x; �(t); t) = min

u(s)2
(s)
H(x; u; �(t); t) is convex in x for each t and K (x (tf ) ; tf ) is convex in x. (?if there

is no Terminal conditions?)

4.3 Continuous Time Optimal Control: Dynamic programming
approach (HJB equation)

The Pontryagin minimum principle approach gives necessary condition for optimality, but the dynamic
programming approach gives a su¢ cient (and often necessary) condition for optimality. However, in the
dynamic programming approach, we need to solve HJB equation, which is partial di¤erential equation and
is very di¢ culty to solve. While, in Pontryagin minimum principle approach, we only need to solve ordinary
di¤erential equations, which are comparitively simple than partial di¤erential equaiton.
Consider the following free-end-point problems (terminal values of the state variables are not con-

strained, but they assume the boundary times t0 = 0 and tf = T are �xed. Also, assume that the initial
boundary value is �xed by �xing x0.):8>>>>>>>>>><>>>>>>>>>>:

max

8>><>>:J =
Z T

0

F (x(t); u(t); t)dt| {z }
Pro�t

+ S[x(T ); T ]| {z }
Salvage Value

9>>=>>;
subject to

State Dynamics: _x(t) = f(x(t); u(t); t)
Initial conditions: x(0) = x0

Admissible Control: u(t) 2 
(t), 8t 2 [0; T ]

9>>>>>>>>>>=>>>>>>>>>>;
((OCP1))

where State equation is the combination of state dynamics and initial conditions; admissible control is
called control constrains as well
Let 8>>><>>>:

Value Function: V (x; t) = max
u(s)2
(s)

n
J =

R T
t
F (x(s); u(s); s)ds+ S[x(T ); T ]

o
subject to

_x(s) = f(x(s); u(s); s)
x(t) = x

9>>>=>>>; (4.2)

Assuming value function exist for every x and t, and also assuming value function is continuously di¤er-
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entiable function of its arguments, then

V (x; t) = max
u(s)2
(s)

fF (x; u; t)dt+ V (x+ _x(t)dt; t+ dt)g

,
V (x; t) = max

u(s)2
(s)
fF (x; u; t)dt+ V (x; t) + Vx (x; t) _x(t)dt+ Vt (x; t) dtg

,
0 = max

u(s)2
(s)
fF (x; u; t)dt+ Vx (x; t) f(x(t); u(t); t)dt+ Vt (x; t) dtg

,
�Vt (x; t) = max

u(s)2
(s)
fF (x; u; t) + Vx (x; t) f(x(t); u(t); t)g

The last partial di¤erential equation is called The Hamilton�Jacobi�Bellman (HJB) equation:

�Vt (x; t) = max
u(s)2
(s)

fF (x; u; t) + Vx(x; t)f(x; u; t)g (4.3)

with boundary condition
V (x; T ) = S(x; T ) (4.4)

Remark 120 Sometimes in solving this HJB equation, we can transfer those partial di¤erentical equations
into ordinary equations by collection terms respect to quadratic, linear and constant in state variable x.
E.g., if the optimal u can be choose easily so that the HJB equation can be stated as f0 (x; t) + f1 (x; t)x +
f2 (x; t)x

2 + f3 (x; t)x
3 + ::: = 0, then we must simultaniously have f0 (x; t) = 0, f1 (x; t) = 0, f2 (x; t) = 0,

... This is because the HJB equation must be satisi�ed for any realized state x.

4.3.1 Derive The Pontryagin minimum principle from HJB equation (Sethi
2005)

De�ne adjoint vector �, shadow price, as the following:

�(t) = Vx(x; t)jx=x�(t) (4.5)

Hence, �(t) can be interpreted as per unit change in the objective function for a small change in x�(t).
Also, de�ne the so-called Hamiltonian

H(x; u; Vx; t) = F (x; u; s) + Vx(x; t)f(x; u; t) = F (x; u; s) + �(t)f(x; u; t) (4.6)

Then, put the adjoint vector into equation 4.3, and we have the Hamilton-Jacobi-Bellman equation, or
simply the HJB equation.

HJB equation: 0 = max
u(s)2
(s)

fH(x; u; Vx; t) + Vtg (4.7)

Next, we will show how to solve, or restate, the HJB equation to maximum principle:
First, by analyzing value function and Hamiltonian, we can draw a connection for adjoint vector:

Adjoint equation:
�
� = �Hx (4.8)

With the de�nition of adjoint vector, equation 4.5, and boundary condition, equation 4.4, we have the
so called transversality condition:

Transversality condition: �(T ) =
@S(x; T )

@x
jx=x(T ) (4.9)
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Hence, Adjoint equation and Transversality condition together will determine the adjoint variables. Mean-
while, the state dynamics and initial condition together will determine the states.( �

x(s) = H�, x(0) = x0
�
� = �Hx, �(T ) =

@S(x;T )
@x jx=x(T )

)
(4.10)

From HJB equation, equation 4.7, it can be restated as

H(x�(t); u�(t); �(t); t) � H(x�(t); u; �(t); t) for all u 2 
(t)

Together with canonical adjoints, equation 4.10, the maximum principle can be stated as following:8><>:
�
x(s) = H�, x(0) = x0

�
� = �Hx, �(T ) =

@S(x;T )
@x jx=x(T )

H(x�(t); u�(t); �(t); t) � H(x�(t); u; �(t); t) for all u 2 
(t)

9>=>; (4.11)

Theorem 121 The necessary condition for optimal control problem, Problem (OCP1), is the optimal control
u�(t) satis�es maximum principle, equation 4.11

Theorem 122 Su¢ ciency conditions: Let u�(t), and the corresponding x�(t) and �(t) satisfy the maximum
principle, equation 4.11, for all t 2 [0; T ]. Then u� is an optimal control if H0(x; �(t); t) = max

u(s)2
(s)
H(x; u; �(t); t)

is concave in x for each t and S(x; T ) is concave in x.

4.3.2 Stochastic optimal control

When the state variable is subject to stochasticity, we can still use the dynamic programming approach to
solve this stochastic optimal control problem. However, the HJB equation will need to be revised because of
the Taylor expansion of V (xt+dt; t+dt) will need to be taken in the form of stochastic di¤erential equations.
E.g. if the state dynamics is in the form of

dx = f (x (t) ; u (t) ; t) dt+ dW

where dW is a Wiener processes with hdWidWji = vij (t; x; u) dt a symmetric positive de�nite matrix, then
by using stochastic calculus we have

�Vt (x; t) = max
u(s)2
(s)

�
F (x; u; s) + Vx(x; t)f(x; u; t) +

1

2
v (t; x; u)Vxx(x; t)

�
, which is called the stochastic Hamilton-Jacobi-Bellman Equation with boundary condition V (x; T ) =
S(x; T ).
(Similarly, the stochastic Pontryagin minimum principle can be derived from from stochastic HJB equa-

tion. E.g. see the note of "Stochastic_Optimal_Control.pdf")
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