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Chapter 1

Monotone Comparative Statics

1.1 Summary

1. For a single function, Theorem 4 of (Milgrom and Shannon 1994) shows the necessary and su¢ cient
condition for monotone comparative statics: Let f : X � T ! R, where X is a lattice, T is a partially
ordered set and S � X. Then argmaxx2S f(x; t) is monotone nondecreasing in (t; S) if and only if f
is quasisupermodular in x and satis�es the single crossing property in (x; t).

2. With one dimensional action space, in order to have monotone comparative statics holds for single
integration of function (summation of functions), Theorem 2 of (Quah and Strulovici 2010) establish
one su¢ cient condition. In order to prove argmaxx2R

R
�2
g(x; �1; �2)d�2 is monotone nondecreasing in

(�1; R), let�s de�ne f(�1; �2) = g(x00; �1; �2)�g(x0; �1; �2), and we want to show
R
�2
f(�1; �2)d�2 satisfy

SC1 (as the decision variable is one dimension, we do not need to consider the quasisupermodular in
decision space). Theorem 2 of (Quah and Strulovici 2010) shows that: if ff (�; �2)g�22�2

an S-summable
family indexed by elements in �2 and de�ned on �1 (f

�
�; �02

�
s f

�
�; �002

�
for any �02; �

00
2 2 �2). For any

�xed �1, f (�1; �) is a measurable and bounded function of �2. Then the function F : �1 ! R de�ned
by F (�1) =

R
�2
f (�1; �2) d�2 is also an S function.

For multiple integration cases, Theorem 3 of (Quah and Strulovici 2010) shows that: let f : � ! R
be a bounded and measurable I1 function. Then (i) Fn : �Nn

! R as de�ned by Fn (�Nn
) =R

�n
f (�Nn

; �n) d�n is an I1 and (ii) F : �1 ! R as de�ned by F (�1) =
R
�2

R
�3
:::
R
�n
f (�1; �2; :::; �n�1; �n) d�nd�n�1:::d�2

is an S function.

3. For multi-dimensional decision variables case, in order to prove the monotone comparative statics for
U (X; �) =

R
u (X; s) f (s; �) ds, according to theorem 1 of (Athey 2002), one su¢ cient condition is that

u is log-supermodular in (X;S) and f is log-supermodular in (S; �).

1.2 De�nitions and Functional properties

De�nition 1 ((Milgrom and Shannon 1994)) Let X be a partially ordered set, with the transitive, re�exive,
antisymmetric order relation �. The set X is a lattice if for every pair of elements x and y in X, the joint
x _ y, least upper bound if exists, and meet x ^ y, the greatest lower bound if exists, do exist as elements of
X.

De�nition 2 ((Milgrom and Shannon 1994)) A subset S of X is a sublattice of X if S is closed under the
operations meet and join.

De�nition 3 ((Milgrom and Shannon 1994)) A sublattice S of X is complete if for every nonempty subset
S0 of S, inf(S0) and sup(S0) both exist and are elements of S.
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1.2. DEFINITIONS AND FUNCTIONAL PROPERTIES M. M. Wei

De�nition 4 ((Veinott 1989)) Strong set order �S: For X a lattice with the given relation �, with Y
and Z elements of the power set P (X), we say that Z �S Y , read "Y is higher than Z", if for every z 2 Z
and y 2 Y , z _ y 2 Y and z ^ y 2 Z.

De�nition 5 Given a partially ordered set T , we say that a set-valued functionM : T ! P (X) ismonotone
nondecreasing if t � t0 implies M(t) �S M(t0). (In case Z and Y are singletons, then the strong set order
�S coincides with the given order �on the underlying choice set.)

Theorem 6 ((Topkis 1978))((Milgrom and Shannon 1994) Thm 1) A subset S of Rn is a sublattice if and
only if there exist n(n�1) functions gij : R2 ! R(i 6= j), each of which is increasing in its �rst argument and
decreasing in its second, and n sets Si � R(i = 1; :::; n) such that S = fxjgij(xi; xj) � 0 for all 1 � ij � ng\
fxjxi 2 Sig.

Theorem 7 ((Milgrom and Shannon 1994) Thm 2) S and S0 are complete sublattices of X such that S �S S0
if and only if there exists a complete sublattice R of X such that S = R \ fx � inf(S)g and S0 = R \ fx �
sup(S0)g. Moreover, if S and S0 are complete sublattices with S �S S0, then S [ S0 is a complete sublattice.

De�nition 8 Let X be a lattice, T be a partially ordered set, and f : X�T ! R. Then f satis�es the single
crossing property in (x; t) if for x0 > x00 and t0 > t00, f(x0; t00) > f(x00; t00) implies that f(x0; t0) > f(x00; t0)
and f(x0; t00) � f(x00; t00) implies that f(x0; t0) � f(x00; t0). If f(x0; t00) � f(x00; t00) implies f(x0; t0) > f(x00; t0),
then f satis�es the strict single crossing property in (x; t).

Remark 9 Alternative de�nition ((Athey 2002)): For T � R, let g : T ! R.
i. g satis�es single crossing function (SC1) in t if there exists inf T � t00 � t000 � supT such that

g(t) < (�) 0 for all t < (�) t00, g(t) = 0 for all t00 < t < t000 , and g(t) > (�) 0 for all t > (�) t000 . (g(t) > (�) 0
for all t > (�) t000 means that if t � t000 then g(t) � 0 and if t > t000 then g(t) > 0.)
ii. h : X � T ! R satis�es single crossing properties in two variables (SC2) in (X;T ) if for all

XH > XL, g (t) = h (XH ; t) � h (XL; t) satis�es SC1. (In (Quah and Strulovici 2010), SC2 is called single
crossing di¤erence and SC1 is called single crossing property)

Remark 10 h and g satisfy SC2 in (X;T ) does NOT mean h+g satis�es SC2 in (X;T ).(Check (Quah and
Strulovici 2010) Prop 1)

De�nition 11 We say that g : R ! R satis�es weak SC1 if there exists a t0 such that g (t) � 0 for all
t < t0 and g (t) � 0 for all t > t0.

De�nition 12 We say that h : X � R ! R satis�es weak SC2 in (X; t) if for all XH > XL, g(t) =
h (XH ; t)� h (XL; t) satis�es weak SC1.

De�nition 13 A decision maker of type t who chooses a point (x; y) 2 R2 has a payo¤ of U(x; y; t). A
continuously di¤erentiable function U on a rectangular domain with Uy 6= 0 satis�es the (strict) Spence-
Mirrlees condition (SM) if Ux= jUyj is nondecreasing (increasing) in t for any �xed (x; y).

Theorem 14 ((Milgrom and Shannon 1994) Thm 3) Let R2 be given the lexicographic order, with (x; y) �
(x0; y0) if either x > x0 or x = x0 and y � y0. Suppose that U(x; y; t) : R3 ! R is completely regular and
twice continuously di¤erentiable with Uy 6= 0. Then U(x; y; t) has the (strict) single crossing property in
(x; y; t) if and only if it satis�es the (strict) Spence-Mirrlees condition.

Remark 15 When choice set is totally ordered (e.g. R), the single crossing property is the only condition
we will need for comparative statics. However, when the choice set is not totally ordered (e.g. R2), an
additional condition (quasisupermodularity) is necessary.

De�nition 16 Given a lattice X, we say that a function f : X ! R is quasisupermodular if (i) f(x) �
f(x ^ y) implies f(x _ y) � f(y) and (ii) f(x) > f(x ^ y) implies f(x _ y) > f(y) .
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1.2. DEFINITIONS AND FUNCTIONAL PROPERTIES M. M. Wei

Lemma 17 It is equivalent to say that f : X ! R is quasisupermodular if and only if it satis�es SC2 in
(xi;xj) for all i 6= j. (Note that SC2 in (xi;xj) for all i 6= j means must satisfy (x1;x2) and (x2;x1), because
SC2 in (x1;x2) does not mean SC2 in (x2;x1). ) (Hence, quasisupermodular seems more strong than SC2.)

Remark 18 When X = R so that the choice set is totally ordered, every function is quasisupermodular, as
the order operations meet and join are then trivial. When X = R2, requiring f to be quasisupermodular is
equivalent to requiring that f satisfy the single crossing property in (x1;x2) and also in (x2;x1).
Essentially, quasisupermodularity expresses a weak kind of complementarity between the choice variables:

if an increase in some subset of the choice variables is desirable at some level of the remaining choice
variables, it will remain desirable as the remaining variables also increases.

Corollary 19 f(x) is quasisupermodular if and only if argmaxx2S f(x) is monotone nondecreasing in S.

Corollary 20 If S is a sublattice of X, and f is quasisupermodular, then argmaxx2S f(x; t) is a sublattice
of S.

De�nition 21 A function f : Rm ! R is supermodular if, let all x; y 2 X and X is lattice,

f(x ^ y) + f(x _ y) � f(x) + f(y)

where x ^ y = (min(x1; y1); :::;min(xm; ym)); x _ y = (max(x1; y1); :::;max(xm; ym))
(The test of supermodularity for a multidimensional function f can be reduced to test the pairwise super-

modularity of f . ((Athey 1998)))

Theorem 22 (Theorem 1 of (Nachbar 2009)) The following are equivalent:
1. f is supermodular;
2. �f is submodular;
3.Let f : Rm ! R, f(x ^ y) + f(x _ y) � f(x) + f(y) for all x; y 2 X and X is lattice;
4. Let f : R2 ! R, f(x�; ��)� f(xo; ��) � f(x�; �o)� f(xo; �o) for all xo � x� and �o � ��;
5. Let f : R2 ! R be C1, Dxf(x�; �

�) is weakly increasing in �, for every x�; (If)
6. Let f : R2 ! R be C1, D�f(x�; �

�) is weakly increasing in x, for every ��;
7. Let f : R2 ! R be C2, D2

�;xf(x
�; ��) � 0 for every (x�; ��);

De�nition 23 h is log-supermodular if it is non-negative and for all x; y 2 X, h(x ^ y) � h (x _ y) �
h (x) � h (y).
(The test of log-supermodularity for a multidimensional function f can be reduced to test the pairwise

log-supermodularity of f given f is positive. ((Athey 1998)))
(The test of log-supermodularity for a multidimensional function f can be tested by whether it holds "one

dimension at a time". I.e. a function g is logsupermodular if and only if g (�; s00K) =g (�; s0K) is increasing in
the scalar sNnK whenever s00K > s

0
K , where K has exactly n� 1 elements.((Quah and Strulovici 2010)))

Theorem 24 When the support of F (�; �) is constant in �, and F has a density f , then the Monotone
Likelihood Ratio Order requires that f is log-supermodular, that is, the likelihood ratio f (s; �H) =f (s; �L) is
nondecreasing in s for all �H > �L.

Theorem 25 ((Athey 2002)) If h is positive, then h is log-supermodular if and only if log h (�) is supermod-
ular.

Remark 26 Supermodularity means that increasing any subset of the decision variables raises the incre-
mental returns associated with increases in the others.
Supermodular and log-supermodular functions are stronger property than quasisupermodular. (Supermod-

ular and log-supermodular functions are subset of quasisupermodular function.)
Supermodular and log-supermodular are stronger property than SC2.
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1.2. DEFINITIONS AND FUNCTIONAL PROPERTIES M. M. Wei

Theorem 27 Preservation property of log-supermodularity
1. Product of log-supermodular functions are log-supermodular function,
2. If h (X; �) is log-supermodular in ALL arguments, then log-supermodularity is preserved under sum-

mation and integration; (By (Ahlswede and Daykn 1978)) (the sum of log-supermodular functions are not

necessary log-supermodular function. E.g. if h (X; �) is log-supermodular only on X, then
Z
h (X; �) d� is

not necessary log supermodular on X.)

Corollary 28 If a function is supermodular then it is also quasisupermodular.

De�nition 29 The function f : X � T ! R has increasing di¤ erences in (x; t) if for x0 � x, f(x0; t)�
f(x; t) is monotone nondecreasing in t.

Remark 30 Increasing di¤erences means that increasing a parameter raises the marginal return to activities.
If a function has increasing di¤erences in (x; t), then it also satisfy the single crossing property in (x; t)

as well.

Theorem 31 Supermodularity is preserved under maximization, limits, addition, expectation, and integra-
tion
1. Non-negative weighted maximum: f = maxfw1f1; :::; wnfng is supermodular, if f1; :::; fn are super-

modular; w1; :::; wn are non-negative;
2. Limitation operation: if fn are supermodular, then lim

n!1
fn is supermodular;

3. Summation: if f and g are supermodular, then f + g is supermodular; (so supermodular is preserved
under expectation and integration ) ((Vives 1990))
4. Scalar: if f is supermodular and s is a scalar, then sf is supermodular; (Lemma 8.3 of (Evan L.

Porteus 2002))
5. Loss function: if f is supermodular, then h(x) = E [f(x�D)] is supermodular, where D is a r.v.;

(Lemma 8.3 of (Evan L. Porteus 2002));
6. Maximization: If (s; x) 2 C is lattice and s 2 S is lattice. Let f(s) = max

x2X
g(s; x) and g(s; x) is

supermodular for (s; x) 2 C. Then f is supermodular on S. (Similarly, submodularity is preserved under
minimization.)
7. If f is supermodular and increasing and g : R! R is increasing and convex, then g�f is supermodular.

((Milgrom and Shannon 1994) Theorem 7)
(submodular is preserved under minimization, limits, addition, expectation, and integration)

Theorem 32 For any quasisupermodular function f : X ! R and any strictly increasing function g : R!
R, the composition g(f(x)) is also quasisupermodular.
If f is supermodular, then g(f(x)) is quasisupermodular for any strictly increasing function g.
If there exists some strictly increasing function h : R ! R such that h(f(x)) is supermodular, then the

original function f is quasisupermodular.

De�nition 33 ((Calzi 1990) Generalized symmetric supermodular functions) If there exists some increasing
function h : R ! R such that h(f(x)) is (strictly) supermodular, then f function is called (Strictly)
supermodularizable. (From the above theorem, we know that supermodularizable function is a subset of
quasisupermodular function. Supermodular function and supermodularizable function have intersection with
in quasi-supermodular function.)

Lemma 34 ((Milgrom and Shannon 1994)) Suppose f : X ! R is quasisupermodular, where X = fx; x0; x _ x0; x ^ x0g,
then there exists some h : R! R such that h is strictly increasing and h�f : X ! R is supermodular. (Note
that the domain of f is restricted to four elements.)

Theorem 35 ((Milgrom and Shannon 1994) Thm 8) Let X be a lattice and f : X ! R. Then f is
quasisupermodular if and only if there exists some g : R �X �X ! R such that (i) g(r; x1; x2) is strictly
increasing in r for every �xed (x1; x2) 2 X2 and (ii) for every x1; x2 2 X, g(f(x); x1; x2) is supermodular
in x on the sublattice fx1; x2; x1 _ x2; x1 ^ x2g.
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1.3. COMPARATIVE STATICS UNDER CERTAINTY M. M. Wei

Theorem 36 ((Milgrom and Shannon 1994) Thm 9) Let X be a lattice and T a partially ordered, �nite set
and f : X � T ! R. Then f has the single crossing property if and only if there exists g : R�X2 � T ! R
such that g is increasing in its �rst argument and for all x1 � x2 in X, g(g (x1; x2) ; x1; x2; t) has increasing
di¤erences in (x; t) on the set fx1; x2g � T .

1.3 Comparative statics under certainty

Theorem 37 (Monotonicity Theorem in (Milgrom and Shannon 1994) Thm 4): Let f : X � T ! R, where
X is a lattice, T is a partially ordered set and S � X. Then argmaxx2S f(x; t) is monotone nondecreasing
in (t; S) if and only if f is quasisupermodular in x and satis�es the single crossing property in (x; t).

Theorem 38 ((Milgrom and Shannon 1994) Thm 5)Let X be a lattice, T a partially ordered set, and
f : X�T ! R. If f(x; t) is supermodular in x and has increasing di¤erences in (x; t), then argmaxx2S f(x; t)
is monotone nondecreasing in (t; S).

Theorem 39 (Combine (Milgrom and Shannon 1994) Thm 8&9) Given a function f : X �T ! R, if there
exists a function g : R � T ! R such that g is increasing in its �rst argument for every t and such that
g (f (x; t) ; t) is supermodular in x and has increasing di¤erence in (x; t), then f if quasisupermodular in x
and satis�es the single crossing property in (x; t).

Theorem 40 ((Milgrom and Shannon 1994)) Let f : Rn�R! R. Then f (x; t)+p �x is quasisupermodular
in x and has the single crossing property in (x; t) for all p 2 Rn if and only if f is supermodular. If f(�) is
nondecreasing in x, then f (x; t) � w � x is quasisupermodular in x and has the single crossing property in
(x; t) for all nonnegative w 2 Rn if and only if f is supermodular.

De�nition 41 fh (�;�) : R! Rg is richly parameterized if for all (x0; y0) and (x00; y00) with x0 6= x00,
there is some �̂ such that y0 = h (x0; �̂) and y00 = h (x00; �̂).

Theorem 42 Let U (x; y; t) : R3 ! R be completely regular with Uy 6= 0 and let h (�;�) : R ! R be a
richly parameterized family. Then U satis�es the (strict) Spence-Mirrlees condition if and only if for all �,
g (x; t; �) = U (x; h (x;�) ; t) has the (strict) single crossing property in (x; t).

Remark 43 This theorem is very useful and usually called the method of dissection: in order to prove the
single crossing property of a complex g function, we can transform the part in g function, where no t involves,
to U function and prove the Spence-Mirrlees condition of U .

Corollary 44 ((Milgrom and Shannon 1994): aggregation principle) Let X be a lattice, T a partially ordered
set, Y an arbitrary set withW � Y , f : X�Y �T ! R, and x� (t; S) be argmaxx2S maxy2W f (x; y; t). Then
x� (t; S) is monotone nondecreasing in (t; S) if and only if g (x; t) = maxy2W f (x; y; t) is quasisupermodular
in x and satis�es the single crossing property in (x; t).

Corollary 45 Let f : R2 ! R and h : R � Y ! R and de�ne x� (t; S; p) = argmaxx2S maxy2W f (x; t) +
h (x; y) + px. Then x� (t; S; p) is nondecreasing in t for all S � R and all p 2 R if and only if f is
supermodular. If f (x; t) + h (x; y) is nondecreasing in x for all y, then x� (t; S; p) is nondecreasing in t for
all S � R and all p � 0 if and only if f is supermodular.

1.3.1 Equilibriums under certainty

De�nition 46 Supermodular games: A class of games in which the players�strategy sets Sn are compact
sublattices and the payo¤ functions �n (xn; x�n; t) are upper semi-continuous in the player�s own strategy
xn, continuous in the competitor�s strategies x�n, supermodular in (xn; xm) where n 6= m, and supermodular
in (xn; t) for any �xed values of the other variables.
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1.4. COMPARATIVE STATICS UNDER UNCERTAINTY M. M. Wei

De�nition 47 Game with strategic complementarities: if for every n :
1. Sn, player n�s strategy set, is compact lattice;
2. �n, player n�s payo¤ function, is upper semi-continuous in xn for x�n �xed, and continuous in x�n

for �xed xn;
3. �n is quasisupermodular in xn and satis�es the single crossing property in (xn; x�n).

Theorem 48 ((Milgrom and Shannon 1994) Thm 12) Let � be a game with strategic complementarities.
Then 8n 2 N , there exist strategies x�n and x�n which are the smallest and largest serially undominated
strategies for player n. Moreover, the pure strategy pro�les x� = (x�n;n 2 N) and x� = (x�n;n 2 N) are
Nash equilibria. (in other words, game with strategic complementarities have at least one pure nash strategy)

Theorem 49 Let �t = fN; (Sn) ; �n (xn; x�n; t)g be a family of games with strategic complementarities
such that �n (xn; x�n; t) satis�es the single crossing property in (xn; x�n; t) for all n 2 N . Then the largest
and smallest pure strategy equilibrium (and serially undominated strategy pro�les) x�n (t) and x�n (t), are
monotone nondecreasing functions of the parameter t.

1.3.2 Others

Interval Order Dominance

De�nition 50 f : R2 ! R satis�es interval order dominance i¤ for any xo; x� 2 R and any �o; �� 2 R,
if xo < x� and �o � ��, then

f(x�; �o)� f(x; �o) � 0 for 8x 2 [xo; x�]) f(x�; ��)� f(xo; ��) � 0

with a strict inequality if f(x�; �o) > f(x; �o).
(If f is di¤erentiable, the su¢ cient condition for interval order dominance is that for any �o � ��,

there is a positive, weakly increasing function � : R ! R such that for all x 2 R, we have Dxf(x; ��) �
�(x)Dxf(x; �

o))
(If � is a constant function, then interval order dominance is equivalent to single crossing.)

Theorem 51 (Theorem 5 of (Nachbar 2009)) Let f : R2 ! R, let C � R be an interval, and for each
� 2 R, let �(�) be the set of solutions, assumed non-empty, to the problem

max
x2C

f(x; �)

If f satis�es the interval order dominance then �(�) is weakly increasing.

1.4 Comparative statics under uncertainty

Generally, in order to prove
R
g (�) f (�) dt to be SC2, we will only need to consider the functional properties

of g (�) and f (�), and whether f or g is distribution density or not will be irrelevant.
More speci�cally, in section "Two functions are log-supermodular functions with choice vector", we only

need to separate the objective function U (X; �) into
R
g (X; s) f (s; �) ds. And we need g and f to be

log-supermodular functions to prove U to be log-supermodular.
In section "One function is single-crossing and the other is log-supmodular with one choice variable",

we need to separate the objective function U (x; �) into
R
g (x; s) f (s; �) ds (or even

R
g (x; �; s) f (s; �) ds by

using (Athey 2002) Lemma 5 extension 1). Then, we need to shown g is SC2 and f is log-supermodular.

1.4.1 Two functions are log-supermodular functions with choice vector

Agent�s objective function is given by U (X; �) =
R
u (X; s) f (s; �) ds, where X is choice vector and � is an

exogenous parameter.

(MCS) X�(�;B) = argmax
X2B

U (X; �) is nondecreasing in � and B
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1.4. COMPARATIVE STATICS UNDER UNCERTAINTY M. M. Wei

Lemma 52 ((Athey 2002) Lma 1) Suppose that f is nonnegative. Then (i) MCS holds for all u : X � S !
R+ log-supermodular, if and only if (ii) U is log-supermodular in (X; �) for all u : X � S ! R+ log-
supermodular.

Remark 53 U is log-supermodular in (X; �) means U is SC2 in (X; �) and U is log-supermodular in X.
Then utilize (Milgrom and Shannon 1994), it is done for su¢ cient condition
This Lemma indicates that if we want MCS to hold for ALL log-supermodular payo¤s function u, then

objective function U must be log-supermodular for ALL log-supermodular payo¤s function u.
Also, if U fails to be log-supermodular for some u log-supermodular, then we can �nd another log-

supermodular payo¤ v, for which MCS fails.
This lemma does not say anything about the equivalence between MCS and log-sup for some log-sup u.

Lemma 54 ((Ahlswede and Daykn 1978)) Let hi, (i = 1; 2; 3; 4), represent four nonnegative functions,
hi : S ! R. Then

h1 (s) � h2 (s0) � h3 (s _ s0) � h4 (s ^ s0) for �-almost for s, s0 2 S

implies Z
h1 (s) d� (s) �

Z
h2 (s) d� (s) �

Z
h3 (s) d� (s) �

Z
h4 (s) d� (s)

Lemma 55 ((Athey 2002) Lma 4) Suppose that f is nonnegative, and that n � 2 if m � 2 (where m is
the dimension of S and n is the dimension of X). Then following two conditions are equivalents: (i) U is
log-supermodular in (X; �) for all u : X�S ! R+ that are log-supermodular a.e.-�; (ii) f is log-supermodular
in (S; �) a.e.-�;

Theorem 56 ((Athey 2002) Thm 1) Suppose that f is nonnegative, and suppose that n � 2 if m � 2 (where
m is the dimension of S and n is the dimension of X). The following two conditions are equivalent:
i) MCS holds for all u : X � S ! R+ that are log-supermodular a.e.-�;
ii) f is log-supermodular in (S; �) a.e.-�;

Remark 57 Note: 1. Use the two lemma 1&4 in (Athey 2002) 2. in order to prove U is log-supermodular,
it will be su¢ cient to show u and f is log-supermodular; 3. this Theorem does NOT imply that if MCS hold
then u and f is log-supermodular. 4. More generally, for U (X; �) =

R
u (X; s; �) f (X; s; �) ds, as long as u

and f are log-supermodular, then U will be log-supermodular and SC2.

1.4.2 One function is single-crossing and the other is log-supmodular with one
choice variable

Agent�s objective function is given by U (x; �) =
R
u (x; s) f (s; �) ds (or even

R
u (x; �; s) f (s; �) ds by using

(Athey 2002) Lemma 5 extension 1), where x is choice variable, only one choice variable, and � is an
exogenous parameter.

(MCS�) x�(�;B) = argmax
x2B

U (x; �) is nondecreasing in � and B

De�nition 58 Two hypotheses H-A and H-B are a minimal pair of su¢ cient conditions (MPSC)
for the conclusion C if (i) C holds whenever H-B does, if and only if H-A holds. (ii) C holds whenever H-A
does, if and only if H-B holds.

Theorem 59 ((Athey 2002) Thm 2) (A) u satis�es SC2 in (x; s) a.e.-�; and (B) f is log-supermodular
a.e.-�; are MPSC for (C) (MSC�) holds.

Remark 60 Note: again, this theorem does not say that u satis�es SC2 and f is log-supermodular are
necessary for (MSC�), but it does indicate that they are su¢ cient condition. Moreover, if we have u satis�es
SC2 (f is log-supermodular) then (MSC�) holds if and only if f is log-supermodular (u satis�es SC2).
(For relaxing condition, please check Lemma 5 and Theorem 3 of (Athey 2002))
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Lemma 61 ((Athey 2002) Lma 5: need for the proof of Thm 2) Let g : S ! R and k : S � � ! R. (A) g
satis�es SC1 a.e.-�; and (B) k is log-supermodular a.e.-�; are a MPSC for (C) G (�) =

R
g (s) k (s; �) d� (s)

satis�es SC1.
(This Lemma is exactly the same as Theorem 2 by constructing g (s) = u (xH ; s)� u (xL; s))

Lemma 62 ((Athey 2002) Lma 5 extension) Lemma 5 of (Athey 2002) holds under any of the following
modi�cations:
(i) g depends on � directly, under the additional restrictions that g is piecewise continuous in � and either

(a) g is nondecreasing in �, or (b) for all �, g is nonzero except at single(�xed) point s0, and further, for all
�H > �L, g (s; �H) =g (s; �L) is nondecreasing in s.
(ii) We allow that for each �, there exists a measure �� such that K (s; �) =

R s
�1 k (t; �) d�

� (t), we de�ne
G (�) =

R
g (s) dK (s; �), and we replace (B) with (B�): � orders K (�; �) by MLR

(iii) Supp [K (�; �)] is constant in �, and (A) is replaced with (A�): g satis�es weak SC1.

Remark 63 For extension (i): we can extend the U (x; �) =
R
u (x; s) f (s; �) ds to U (x; �) =

R
u (x; �; s) f (s; �) ds

For extension (ii): we can extend the distribution density f (�) to a probability measure F (�)
For extension (iii): we can reduce the requirement of SC1 to weak SC1.

Theorem 64 ((Athey 2002) Thm 3) For each � 2 �, let K (�; �) be a probability distribution on S. Then (C)
(MCS�) holds for all sets B whenever (A) u satis�es SC2 in (x; s) a.e.-�, and for all xH > xL, u (xH ; s)�
u (xL; s) is weakly quasiconcave in s a.e.-�, if and only if (B) K is log-supermodular.
(Di¤erent from Thm 2, this theorem relax the requirement of exist a distribution density function. Instead,

it use a distribution function K. And log-supermodular of K is weaker than log-supermodular of k.)

1.4.3 Single crossing of indi¤erence curves

For an arbitrary di¤erentiable function h : R3 ! R that satis�es @h(x;y;t)@y 6= 0. Let V (x; y; �) =
R
v (x; y; s) f (s; �) d� (s).

De�nition 65 (x; y)-indi¤erence curves areWell-Behaved (WB) if h is di¤erentiable in (x; y); @h(x;y;t)@y 6=
0; the (x; y)-indi¤erence curves are closed curves.

Lemma 66 ((Athey 2002) Lma 8) Let v : R3 ! R and f : R2 ! R+, and suppose that v and V satisfy
(WB). Then (A) v (x; y; s) satis�es (SM) a.e.-�, and (B) f is log-supermodular in (s; �) a.e.-�, are a MPSC
for (C) V (x; y; �) satis�es (SM).

Theorem 67 ((Athey 2002) Thm 4) Lemma 8 of (Athey 2002) also holds if (C) is replaced with x� (�;B) =
argmaxx2B V (x; b (x) ; �) is nondecreasing in � and B for all b : R! R.

9
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1.4.4 Summary of (Athey 2002)�results

Note that those conditions are "necessary and su¢ cient" under the terminology of minimal pair of
su¢ cient conditions (MPSC). (Not the traditional Necessary and Su¢ cient condition.)
Also, there is an extension for "One function is single-crossing and the other is log-supmodular with

one choice variable" section ((Athey 2002) Thm 2), we can separate the objective function U (x; �) intoR
u (x; �; s) f (s; �) ds by using (Athey 2002) Lemma 5 extension 1.

1.5 Aggregating single crossing property

In (Athey 2002), we know the condition that the single crossing property holds for single integral. But the
multi-dimensional integrals case were not discussed in details. In (Quah and Strulovici 2010), authors want

10
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to �nd the condition single crossing property preserved under single or multiple integrals. Also, authors
generalize the relax some conditions in (Athey 2002).
In this section, according to (Quah and Strulovici 2010), we assume the action space / decision

space is one dimension.

1.5.1 Single integral

In this section, we want to �nd the condition on f : �1 � �2 ! R which guarantee that F : � ! R to be
SC1 (S functions), where

F (�1) =

Z
�2

f (�1; �2) d�2

In order to prove
R
�2
f (�) g (�) d�2 be SC1, instead of requiring f to be SC1 and g be logsupermodular

function as in (Athey 2002), (Quah and Strulovici 2010) relax this the condition by only requiring f � g
be S-summable family. (By the proof of Corollary 1: if f is SC1 and g is logsupermodular, then f � g is
S-summable family)

De�nition 68 ((Quah and Strulovici 2010)) De�ne the binary relation s by the following way: we say
that h s g if
a) at any �0 2 �, such that g

�
�0
�
< 0 and h

�
�0
�
> 0, we have

�
g
�
�0
�

h
�
�0
� � g

�
�00
�

h
�
�00
� when �00 > �0; and

b) at any �0 2 �, such that h
�
�0
�
< 0 and g

�
�0
�
> 0, we have

�
h
�
�0
�

g
�
�0
� � h

�
�00
�

g
�
�00
� when �00 > �0.

Remark 69 s is a re�exive relation and is not transitive.
If h s g then �h s �g for � and � are nonnegative scalars.

De�nition 70 ((Quah and Strulovici 2010)) A function with SC1 is called S function

De�nition 71 ((Quah and Strulovici 2010)) Two SC1 functions that are related by s is called S�summable;
a family of SC1 functions in which any two functions are related to each other is said to be an S�summable
family.

Proposition 72 ((Quah and Strulovici 2010) Prop 1) Let h and g be two S functions. Then �h+ g is an
S function for all positive scalars � if and only if h s g.

Proposition 73 ((Quah and Strulovici 2010) Prop 2) Suppose ffig1�i�M is an S�summable family. (i)
Then

PM
i=1 �ifi where �i � 0 for all i, is an S function. (ii) suppose h is an S function and h s fi for all

i, then h s
PM

i=1 fi.

Theorem 74 ((Quah and Strulovici 2010) Thm 2) Let T be a measurable subset of R and ff (�; �2)g�22�2
an

S-summable family indexed by elements in �2 and de�ned on �1 (f
�
�; �02

�
s f

�
�; �002

�
for any �02; �

00
2 2 �2).

For any �xed �1, f (�1; �) is a measurable and bounded function of �2. (i) Then the function F : �1 ! R
de�ned by F (�1) =

R
�2
f (�1; �2) d�2 is also an S function. (ii) If g is an S function and g s f (�; �2) for all

�2 2 �2, then g s F .

Corollary 75 ((Quah and Strulovici 2010)) ((Athey 2002) Lemma 5) Let T be a measurable subset of R
and K a subset of R. Suppose f : T ! R is an S function and that g : T �K ! R++ is a logsupermodular
function. Then F : K ! R is an S function, where F (k) =

R
T
f(t)g (k; t) dt.
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Remark 76 (Quah and Strulovici 2010) generalized the results of (Athey 2002) Lemma 5: if f is SC1 and g
is logsupermodular, then f �g is S-summable family. Hence, (Athey 2002)�s results can be further generalized
into the S-summable family.

Proposition 77 Suppose � =
�
�; �
�
and let f and g be a bounded and measurable function de�ned on this

interval. For some point �̂ in the interior of �, and a � ŝ, de�ne the function f̂ : fag[ (�̂; �]! R by

f̂ (�) =

( R
[�;�̂] f (z) dz if � = a

f (�) if � 2 (�̂; �]

This process is called domain coarsening (Domain coarsening preserves the single crossing property.)
De�ne �f on the two-point domain f0; 1g by

�f (�) =

( R
[�;�̂] f (z) dz if � = 0R
(�̂;�]

f (z) dz if � = 1

Then (i) The function f̂ and ĝ satisfy f̂ s ĝ. (ii) the function �f and �g satisfy �f s �g

1.5.2 Multiple integral

In this section, we consider functions de�ned on the domain � =
Yn

i=1�i
, with �i a bounded and measurable

subset of R. For any � 2 �, we denote its subvector consisting of entries in K � N = f1; 2; :::; ng by �K and
write � as

�
�NnK ; �K

�
. The set consisting of the subvectors �K we denote by �K , so � = �NnK � �K . If

we restrict f function to the subvector �NnK with a �xed value �0K , we denote this restricted function as
f
�
�; �0K

�
. Denote Nk as a subset of N that Nk = Nn fkg.

In this section, we want to �nd conditions on f : �! R which guarantee that F : �1 ! R is SC1, where

F (�1) =

Z
�2

Z
�3

:::

Z
�n

f (�1; �2; :::; �n�1; �n) d�nd�n�1:::d�2

De�nition 78 A function f : � ! R has the j-integrable single crossing property if it is SC1 (S
function) on � =

Yn

i=1�i
and

f
�
�; �00K

�
s f

�
�; �0K

�
whenever �00K > �

0
K , for every K � Nj. We refer to such a function as an Ij function.

Remark 79 Since f is SC1, if f
�
��NnK ; �

00
K

�
and f

�
��NnK ; �

0
K

�
have opposite signs then it must be the

case that the former is positive and the latter is negative, hence f
�
�; �00K

�
s f

�
�; �0K

�
condition is equivalent

to checking � f(��NnK ;�
0
K)

f
�
��
NnK ;�

00
K

� � � f(���NnK ;�
0
K)

f
�
���
NnK ;�

00
K

� whenever ���NnK > ��NnK .
De�nition 80 If f is an Ij function for every j 2 N , then we shall refer to it as an I function

Remark 81 If f is an Ij function and g is logsupermodular, then h (�) = f (�) g (�) is an Ij function.
Any increasing function is an I function.

Proposition 82 ((Quah and Strulovici 2010) Prop 6) Let f : � ! R be an S function. Then f is an I1
function if and only if the following holds: f

�
�; �00K

�
s f

�
�; �0K

�
whenever �00K > �0K , where K is a subset of

N with exactly n� 1 elements and �01 = �001 if 1 2 K.

Theorem 83 ((Quah and Strulovici 2010) Thm 3) Let f : �! R be a bounded and measurable I1 function.
Then (i) Fn : �Nn ! R as de�ned by Fn (�Nn) =

R
�n
f (�Nn ; �n) d�n is an I1 and (ii) F : �1 ! R as de�ned

by F (�1) =
R
�2

R
�3
:::
R
�n
f (�1; �2; :::; �n�1; �n) d�nd�n�1:::d�2 is an S function.
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Corollary 84 ((Quah and Strulovici 2010) Corollary 2) (Karlin and Rinott 1980) ((Ahlswede and Daykn
1978)) Let Xi (for i = 1; 2; :::;m) and Yj (for j = 1; 2; :::;m) be measurable subsets of R and suppose that
the function � : X � Y ! R (where X =

Qm
i=1Xi and Y =

Qn
j=1 Yj) is uniformly bounded and measurable

with respect to y 2 Y . If � is logsupermodular in (x; y), then the function � (x) =
R
Y
� (x; y) dy is also a

logsupermodular function.

Proposition 85 ((Quah and Strulovici 2010) Prop 7) Let f : �! R be bounded and measurable I1 function
and suppose that g s f

�
�; �0N1

�
for every �0N1

2 �N1
, where g : �1 ! R is an S function. Then g s F ,

where F is de�ned by F (�1) =
R
�2

R
�3
:::
R
�n
f (�1; �2; :::; �n�1; �n) d�nd�n�1:::d�2.

Theorem 86 ((Quah and Strulovici 2010) Thm 4) Let V (x; �1) =
R
�N1

v (x; �1; �2; :::; �n) f (�N1
j�1) d�N1

and �(�) = v (x00; �) � v (x; �). Suppose f (�N1
j�1) is logsupermodular and, for any x00 > x0, � is an I1

function. Then V (x; �1) obeys single crossing di¤erences and argmaxx2X V (x; �1) increases with �1.
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