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Chapter 1

Function properties

1.1 Convex Functions

In this section, we need to discuss di¤erent kinds of convexity and the relationship between them.

1.1.1 Convex set

De�nition 1 Let S � Rn, S is convex set if for each x1; x2 2 S, �x1 + (1� �)x2 2 S for 8 � 2 [0; 1]:

Theorem 2 S is convex if when two points are in the set, then the line segment joining them is also in the
set.

Theorem 3 If S is convex, then S = H(S).

Theorem 4 Let E and F be nonempty convex sets inRn.
1. E + F is convex set;
2. rE is convex set, for 8r 2 R;
3. E \ F is convex set;
4. H(E), convex hull of E, is convex set.

De�nition 5 Let S � Rn, the convex hull of S, H(S) or Conv(S), is the set of all convex combination of
points in S.

Theorem 6 H(S) is the smallest convex set containing S.

1.1.2 Convex Function and Equivalence

De�nition 7 Let S � Rn and S is convex set, f is a convex function on S, if, for each x1; x2 2 S, we
have f(�x1 + (1� �)x2) � �f(x1) + (1� �)f(x2), for 8 � 2 [0; 1]. (This means f lies below every chord.)

De�nition 8 Let S � Rn and S is convex set, f is a strict convex function on S, if, for each x1; x2 2 S,
we have f(�x1+(1��)x2) < �f(x1)+ (1��)f(x2), for 8 � 2 (0; 1). (This means f lies below every chord.)

De�nition 9 Let S � Rn, S 6= �, and S is convex; let f : S ! R1, then the level set is de�ned as
S� = fx 2 Sjf(x) � �g

Theorem 10 Let S � Rn, S 6= �, and S is convex; let f : s! R1. If f is convex function on S, then the
S� for 8� 2 R1 is a convex set. (If S� for 8� 2 R1 is a convex set, then f is quasi-convex)

De�nition 11 Let S � Rn, S 6= �, and S is convex; let f : s ! R1, then epigraph of f is de�ned as
epi(f) = f(x; y)jx 2 S; y 2 R1; y � f(x)g.
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1.1. CONVEX FUNCTIONS M. M. Wei

Theorem 12 (Equivalence of proving convex function) Let S � Rn, S 6= �, and S is convex; let f : s! R.
Then the following are equivalent:
1. f is convex function on S;
2. for each x1; x2 2 S, we have f(�x1 + (1� �)x2) � �f(x1) + (1� �)f(x2), for 8 � 2 [0; 1]
3. epi(f) is a convex set;
4. for each �x 2 Rn, f(x) � f(�x) + (x� �x)trf(�x) for 8x 2 Rn (given f is di¤erentiable);
5. (rf(x2)�rf(x1))t(x2 � x1) � 0 for 8x1; x2 2 Rn (given f is di¤erentiable);
6. for H(x) is PSD 8x 2 Rn (given f is twice di¤erentiable); (For how to show H is PSD, refer to

Theorem 17)
7.�f is concave function on S;
8. f�1 is concave function (given f is invertible)

Theorem 13 (Equivalence of proving strict convex function) Let S � Rn, S 6= �, and S is convex; let
f : s! R. Then the following are equivalent:
1. f is strict convex function on S;
2. for each x1; x2 2 S, we have f(�x1 + (1� �)x2) < �f(x1) + (1� �)f(x2), for 8 � 2 (0; 1).
3. for each �x 2 Rn, f(x) > f(�x) + (x� �x)trf(�x) for 8x 2 Rn and x 6= �x. (given f is di¤erentiable);
4. (rf(x2)�rf(x1))t(x2 � x1) > 0 for 8x1; x2 2 Rn and x 6= �x (given f is di¤erentiable);
5. �f is strict concave function on S;
6. f�1 is strict concave function (given f is invertible)

Theorem 14 If f is convex, than f (x) + f (x+ a) � f (x+ �a) + f (x+ (1� �) a) for � 2 [0; 1]. (From
Scarf 1959: bayes solutions of the statistical inventory problem, page 498 before equation 25)

Theorem 15 Let S � Rn, S 6= �, and S is open and convex; let f : s ! R1 and f is twice di¤erentiable,
then if H(x) is PD 8x 2 Rn, then f is strict convex function. (PS: f is strict convex function only infer
H(x) is PSD 8x 2 Rn).

Theorem 16 (From Wiki)The convexity property is preserved under
1. Non-negative weighted maximum: f = maxfw1f1; :::; wnfng is convex, where f1; :::; fn are convex;

w1; :::; wn are non-negative;
2. Summation: if f and g are convex, then f + g is convex;
3. Positive Linear Combination: f = w1f1 + w2f2 + ::: + wnfn is convex, where f1; :::; fn are convex;

w1; :::; wn are non-negative; (so convexity is preserved under expectation and integration)
4. Composition with a non-decreasing function: let f : Rn ! R is convex, h : R ! R is convex and

non-decreasing, then h � f is convex1
5. Under a¢ ne maps: if f(x) is convex with x 2 Rn, then g(y) = f(Ay + b) is convex, where y 2 Rm,

A 2 Rn�m, b 2 Rn.
6. Maximization: Let f(x; y) : X � Y ! R. If Y is non-empty and X is convex set, f(�; y) is convex

function on a convex set X for each y 2 Y . Then g(x) = sup
y2Y

f(x; y) in convex on X. (Heyman and Sobel,

1984:525)
7. Minimization: Let f(x; y) : X � Y (x)! R. If Y (x) is a nonempty set for every x 2 X, X is convex

set, and (X;Y (x)) is convex set, f(x; y) is convex function on (X;Y (x)), g(x) > �1 for 8x 2 X. Then
g(x) = inf

y2C
f(x; y) in convex on X. (Heyman and Sobel, 1984:525)

8. Under perspective function transformation: if f(x) is convex, then its perspective function g(x; t) =
tf(x=t) ic convex.
9. Limitation operation: if fn are convex, then lim

n!1
fn is convex;

1The analogous claim for concave function is odd: let f : Rn ! R is concave, h : R ! R is concave and non-decreasing,
then h � f is concave. If f is strict concave and h is strictly increasing and concave then h � f is strict concave
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1.1. CONVEX FUNCTIONS M. M. Wei

Convexity and Hessian Matrix

Theorem 17 Let one of the following assumptions hold for the Hessian matrix H:
1. All its eigenvalues are positive; (Necessary and E¢ cient condition)
2. the determinant of every principal miinor is nonnegative; (Necessary and E¢ cient condition)
3. has positive diagonal elements and is diagonally dominant; (Su¢ cient condition)
4. H = ATA: Hessian matrix H can be decomposite to product of AT and A
5. If H = BTAB, where A is n� n and positive de�nite and B is n�m with rank m, and m � n;
6. H�1 is positive de�nite
Then, Hessian matrix H is positive semide�nite.

Theorem 18 (Young, 1971:14) The number � is an eigenvalue of An�n i¤ � is a root of the characteristic
equation

det(A� �I) = 0

where det(�) is the determinant and I is the identity matrix

Theorem 19 (Young, 1971:14) The eigenvalues �1; �2; :::; �n satisfy

nY
i=1

�i = det(A) and
nX
i=1

�i = trace(A)

where trace(�) is the sum of diagonal elements of the squared matrix.
(2 by 2 matirx�s eigenvalues can be found by this way very e¢ ciently)

Theorem 20 (Ostrowski, 1960) The eigenvalues of a matrix are continuous functions of its elements.

Theorem 21 (Young, 1971:16) All eigenvalues of a symmetric matrix are eral.

Theorem 22 (Gerschgorin Bounds on Eigenvalues) Let �i denote the sum of the absolute values of the o¤-
diagonal elements in row i. That is: �i =

P
j 6=i jaij j. All eigenvalues of A lie in the union of the following

sets:
f�j j�� aiij � �ig for 1 � i � n

De�nition 23 A matrix is diagonally dominant if the absolute value of each diagonal element exceeds
the sum of the absolute values of the o¤-diagonal elements in its row:

jaiij �
X
j 6=i

jaij j for all i

It is strictly diagonally dominant if the inequality holds strictly for the above equation.

Theorem 24 If a symmetric matrix has positive diagonal elements and is diagonally dominant / strictly
diagonally dominant. Then it is positive semide�nite / de�nite.

Theorem 25 (Heyman and Sobel, 1984:537) Any matrix of the form ATA is positive semide�nite.

Theorem 26 (Heyman and Sobel, 1984:537) If A is positive de�nite, then A is nonsigular and A�1 is
positive de�nite.

Theorem 27 (Heyman and Sobel, 1984:537) If A is n� n and positive de�nite and B is n�m with rank
m, and m � n, then BTAB is positive de�nite.
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1.1. CONVEX FUNCTIONS M. M. Wei

1.1.3 K-Convex Function

K-convexity is only de�ned for functions of a single real variable, while convexity is de�ned for functions of
many real variables.
In general, K-convex function is de�ned for dynamic inventory with �xed order cost model. Also, there

are quasi-K-convexity, quasi-K-convexity with changeover, and nontrivially quasi-K-convex de�nied needed
for more general (s, S) invenotry models, for reference, please check chapter 9 of Porteus

De�nition 28 (Equivalence of K�convex function) Let f : R ! R, and K � 0. Then the following are
equivalent:
1. f is K�convex;
2. For each x � y, 0 � � � 1, f(�x+ (1� �)y) � �f(x) + (1� �) [K + f(y)].
3. K + f(x+ a) � f(x) + a

b [f(x)� f(x� b)], for all x 2 R, a � 0, and b > 0.
4. K + f(y) � f(x) + f

0
(x)(y � x) for all x � y. (f is C1)

Theorem 29 K�convex function can NOT have a positive jump at a discontinuity.
(A negative jump cannot be too large)

Theorem 30 If f is convex, then f is K�convex for any K � 0.
(However, if f is K�convex, it is not necessary f is convex or quasi-convex.)

Theorem 31 (Scarf, 1960)The K�convexity property is preserved under
1. scalar multiply: if f is K�convex and s is a positive scalar, then sf is k�convex for all k � sK.
2. Summation: if f is K�convex and g is k�convex, then f + g is (k +K)�convex.

Theorem 32 If v is K�convex, � is the probability density of a positive random variable, and G(y) :=
E [v(y �D)] =

R1
0
v(y � �)�(�)d�. Then G is K�convex.

Theorem 33 If f is K�convex, x < y, and f(x) = K + f(y). Then f(z) � K + f(y) for all z 2 [x; y].
(K�convex function f can cross the value K + f(y) at most once on (�1; y) for each real y.)

1.1.4 Quasi-Convex Function

De�nition 34 Let S � Rn and S is convex set, f is a quasi-convex function on S, if, for each x1; x2 2 S,
we have f(�x1 + (1� �)x2) � maxff(x1); f(x2)g, for 8 � 2 [0; 1]:

Remark 35 For quasi-convex function, it can have sadder point / point of in�ection, �at spot, and discon-
tinuity.

Theorem 36 (Equivalence of proving quasi-convex function) Let S � Rn, S 6= �, and S is convex; let
f : s! R. Then the following are equivalent:
1. f is quasi-convex function on S;
2. for each x1; x2 2 S, we have f(�x1 + (1� �)x2) � maxff(x1); f(x2)g, for 8 � 2 [0; 1]:
3. the S� for 8� 2 R1 is a convex set.[?]
4. for all x

0
; x 2 S, rf(x)(x0 � x) � 0 whenever f(x0) � f(x) (given f is di¤erentiable);[?]

5. for all x
0
; x 2 S, f(x0) > f(x) whenever rf(x)(x0 � x) > 0 whenever (given f is di¤erentiable);[?]

6. for each x 2 S, the Hessian matrix D2f (x) is negative semide�nite in the subspace
�
z 2 RN : rf (x) � z = 0

	
,

that is, if and only if z �D2f(x) � z � 0 whenever rf(x) � z = 0 (given f is twice di¤erentiable);[?]

Theorem 37 A bivariate function g (x; y) is jointly quasiconcave in two variables if and only if every vertical
slice of the function is quasiconcave, or more formally, if and only if g (x; y) is quasiconcave given mx+y = k
for any real values m and k. (Lemma 1 of Zhao and Atkins. 2008. Nesvendors under simultaneous price
and inventory competition. MSOM. 10(3).)

Theorem 38 If f is quasi-convex function on S. Let g : S ! R be an non-decreasing function. Then g � f
is quasiconcave function.
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1.1. CONVEX FUNCTIONS M. M. Wei

Theorem 39 If f is quasi-convex function on S and k > 0, then kf is quasiconcave function.

De�nition 40 Let S � Rn and S is convex set, f is a strictly quasi-convex function2 on S, if, for each
x1; x2 2 S with f(x1) 6= f(x2), we have f(�x1 + (1� �)x2) < maxff(x1); f(x2)g, for 8 � 2 (0; 1):

Remark 41 For strictly quasi-convex function, it can have sadder point / point of in�ection, �at spot at the
botton, and discontinuity. (So, strictly quasi-convex eliminate �at spot except at the botton from quasi-convex
function)

Remark 42 Strictly quasi-convex function generally NOT infer quasi-convex function unless we add conti-
nuity condition.

De�nition 43 Let S � Rn and S is convex set, f is a strongly quasi-convex function3 on S, if, for
each x1; x2 2 S and x1 6= x2, we have f(�x1 + (1� �)x2) < maxff(x1); f(x2)g, for 8 � 2 (0; 1):

Remark 44 For strongly quasi-convex function, it can have sadder point / point of in�ection and disconti-
nuity. (So, strong quasi-convex eliminate all �at spot from quasi-convex function)

Theorem 45 (Equivalence of proving strongly quasi-convex function4) Let S � Rn, S 6= �, and S is convex;
let f : s! R. Then the following are equivalent:
1. f is strong quasi-convex function on S;
2. for each x1; x2 2 S and x1 6= x2, we have f(�x1 + (1� �)x2) < maxff(x1); f(x2)g, for 8 � 2 (0; 1):
3. for all x

0
; x 2 S and rf(x) 6= 0, rf(x)(x0 � x) > 0 whenever f(x

0
) � f(x) and x1 6= x2 (given f is

di¤erentiable);
4. for each x 2 S, the Hessian matrix D2f (x) is negative de�nite in the subspace

�
z 2 RN : rf (x) � z = 0

	
,

that is, if and only if z �D2f(x) � z > 0 whenever rf(x) � z = 0 (given f is twice di¤erentiable);[?]

Theorem 46 If f is strongly quasi-convex function on S. Let g : S ! R be an increasing function. Then
g � f is strongly quasiconcave function.

Theorem 47 If f is strongly quasi-convex function on S and k > 0, then kf is strongly quasiconcave
function.

Theorem 48 (From Wiki)The quasiconvexity property is preserved under
1. Non-negative weighted maximum: f = maxfw1f1; :::; wnfng where f1; :::; fn are quasi-convex; w1; :::; wn

are non-negative;
2. Composition with a non-decreasing function: let g : Rn ! R is quasiconvex, h : R ! R is non-

decreasing, then f = h � g is quasiconvex5
3. Maximization: If Y is a nenempty set and f(�; y) is a quasi-convex function on a convex set X for

every y 2 Y . Then g(x) = sup
y2Y

f(x; y) is a quasi-convex function on X.

4. Minimization: Let f(x; y) : X � Y (x)! R. If Y (x) is a nonempty set for every x 2 X, X is convex
set, and (X;Y (x)) is convex set, f(x; y) is quasi-convex function on (X;Y (x)), g(x) > �1 for 8x 2 X.
Then g(x) = inf

y2C
f(x; y) in convex on X.

(However, sum of quasiconvex function can be not quasiconvex.)

2Some textbook and notes, e.g. MWG P933 and John Nachbar�s Finite Dimensional Optimization II, use strongly quasi-
convex as de�nition for strictly quasi-convex function

3Some textbook and notes use strongly quasi-convex as de�nition for strictly quasi-convex function
4Some textbook and notes use strongly quasi-convex as de�nition for strictly quasi-convex function
5Di¤erent from convex case, here, we only require h be non-decreasing.
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1.1. CONVEX FUNCTIONS M. M. Wei

1.1.5 Psedo-convex Function

De�nition 49 Let S � Rn, S is convex set, and f is di¤erentiable. f is a pseudo-convex function on
S, if, for each x1; x2 2 S, we have if rf(x1)(x2 � x1) � 0, then f(x2) � f(x1).

Remark 50 For pseudo-convex function, it can have �at spot at the botton. (So, pseudo-convex function
eliminate �at spot except at the botton, eliminate sadder point / point of in�ection, and assume continuity
from quasi-convex function)

Theorem 51 If f is not quasi-convex, then f is not pseudo-convex.

De�nition 52 Let S � Rn, S is convex set, and f is di¤erentiable. f is a strictly pseudo-convex
function on S, if, for each x1; x2 2 S and x1 6= x2, we have if rf(x1)(x2 � x1) � 0, then f(x2) > f(x1).

Theorem 53 Equivalently, f is a strictly pseudo-convex function on S, if, for each x1; x2 2 S and x1 6= x2,
we have if f(x2) � f(x1), then rf(x1)(x2 � x1) < 0.

Remark 54 For strictly pseudo-convex function, it can have NO �at spots, points of in�ection, and dis-
continouity. (So, strictly quasi-convex eliminate �at spot, eliminate sadder point / point of in�ection, and
assume continuity from quasi-convex function)

Theorem 55 If f is strictly pseudo-convex function, then f is strong quasi-convex function.

1.1.6 Relationship between Convex functions
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1.1. CONVEX FUNCTIONS M. M. Wei

1.1.7 Convexity of functional of convex functions

De�nition 56 A real-valued function � de�ned on a set T � Rm�Rk is said to be increasing-decreasing
on T if and only if for every (y1; z1) 2 T and (y2; z2) 2 T :

y2 � y1 and z2 � z1 imply �(y2; z2) � �(y1; z1)

Lemma 57 Let � be a real-valued di¤erentiable function on an open convex set T � Rm � Rk. Then � is
increasing-decreasing on T i¤, for every (y; z) 2 T

ry�(y; z) � 0 ; rz�(y; z) � 0

Theorem 58 (M. Aveiel, NLP: analysis & Methods, Theorem 6.9) Let X � Rn be a convex set, let f(x) =
(f1(x); :::; fm(x)) and g(x) = (g1(x); :::; gk(x)) be de�ned on X, and let � be a real-valued function on
Rm �Rk. De�ne

�(x) = �(f(x); g(x))

8



1.1. CONVEX FUNCTIONS M. M. Wei

and let any one of the following assumptions hold:
i). f is convex, g is concave, � is increasing-decreasing;
ii). f is linear, g is linear;
iii). f is convex, g is linear, � is y-increasing;
iv). f is concave, g is linear, � is y-decreasing;
Then
a). If � is convex, then � is convex.
b). If X is open, f and g are di¤erentiable on X, and � is pseudoconvex, then � is pseudoconvex.
c). If � is quasiconvex then � is quasiconvex.

1.1.8 Properties under optimization

Theorem 59 Non-negative weighted maximum: f = maxfw1f1; :::; wnfng where f1; :::; fn are convex; w1; :::; wn
are non-negative. Then f is convex.

Theorem 60 Non-negative weighted maximum: f = maxfw1f1; :::; wnfng where f1; :::; fn are quasi-convex;
w1; :::; wn are non-negative. Then f is quasi-convex.

Theorem 61 If Y is a nenempty set and f(�; y) is a quasi-convex function on a convex set X for every
y 2 Y . Then g(x) = sup

y2Y
f(x; y) is a quasi-convex function on X.

Theorem 62 Let f(x; y) : X � Y (x) ! R. If Y (x) is a nonempty set for every x 2 X, X is convex set,
and (X;Y (x)) is convex set, f(x; y) is quasi-convex function on (X;Y (x)), g(x) > �1 for 8x 2 X. Then
g(x) = inf

y2C
f(x; y) in convex on X. (In Heyman and Sobel, 1984:525, it state the same result with more

strong condition by requiring f(x; y) be convex)

Theorem 63 (Heyman and Sobel, 1984:525) Let f(x; y) : X � Y ! R. If Y is non-empty and X is convex
set, f(�; y) is convex function on a convex set X for each y 2 Y . Then g(x) = sup

y2Y
f(x; y) in convex on X.

9



Chapter 2

Calculus

2.1 Continuity

Theorem 64 Intermediate value theorem

Theorem 65 Extreme value theorem

Remark 66 1. The sequence of continuous function does not necessarily pointwise converge to a continuous
function; if the sequence converges uniformly, then by uniformly convergence theorem, its limit function is
continuous.

Theorem 67 1. Sum, product, di¤erence, and quotient (if the denominator is not zero) of continuous
functions is continuous.
2. Composition of continuous functions is continuous.

2.2 Limits

Theorem 68 (Algebraic limit theorem) If the limits of f(x) and g(x) exist, then
1. lim

x!p
(f(x) + g(x)) = lim

x!p
f(x) + lim

x!p
g(x)

2. lim
x!p

(f(x)� g(x)) = lim
x!p

f(x)� lim
x!p

g(x)

3. lim
x!p

(f(x) � g(x)) = lim
x!p

f(x) � lim
x!p

g(x)

4. lim
x!p

(f(x)=g(x)) = lim
x!p

f(x)= lim
x!p

g(x)

5. lim
x!p

s � f(x) = s � lim
x!p

f(x), where s is scalar multiplier;

6. lim
x!p

sf(x) = s
lim
x!p

f(x)
, where s is a positive real number;

Proposition 69 (Limits of Extra Interest) The following results hold:

1. lim
x!0

sin x
x = 1

2. lim
x!0

1�cos x
x = 0

Theorem 70 (L�Hopital�s Rule) If lim
x!p

( f(x)g(x) ) has the form of 00 or
�1
�1 , then limx!p

( f(x)g(x) ) = lim
x!p

( f
0
(x)

g0 (x)
)

10



2.3. DERIVATIVE AND INTEGRAL: M. M. Wei

2.3 Derivative and Integral:

2.3.1 Mean Value Theorem

Theorem 71 (Mean Value Theorem) Let f : [a; b] ! R be a continuous function on the closed interval
[a; b], and di¤erentiable on the open interval (a; b), where a < b. Then there exists some c in (a; b) such that
f
0
(c) = f(b)�f(a)

b�a .

Theorem 72 (Cauchy�s Mean Value Theorem) Let f : [a; b]! R and g : [a; b]! R be a continuous function
on the closed interval [a; b], and di¤erentiable on the open interval (a; b), where a < b. Then there exists

some c in (a; b) such that f
0
(c)

g0 (c)
= f(b)�f(a)

g(b)�g(a) .

Theorem 73 (The First Mean Value Theorem for Integration) Let f : [a; b]! R be a continuous function
on the closed interval [a; b], and let g : [a; b]! [0;1) be a integrable function, where a < b. Then there exists
some c in [a; b] such that

R b
a
f(t)g(t)dt = f(c)

R b
a
g(t)dt.

(If g(t) = 1, then
R b
a
f(t)dt = f(c)(b� a))

Theorem 74 (The Second Mean Value Theorem for Integration) Let f : [a; b]! R be a positive monoton-
ically decreasing function on the closed interval [a; b], and let g : [a; b] ! R be a integrable function, where
a < b. Then there exists some c in (a; b] such that

R b
a
f(t)g(t)dt = f(a)

R c
a
g(t)dt.

Theorem 75 (The Second Mean Value Theorem for Integration by Hiroshi Okamura) Let f : [a; b] ! R
be a monotonic function (not necessarily positive and decreasing) on the closed interval [a; b], and let g :
[a; b]! R be a integrable function, where a < b. Then there exists some c in (a; b) such that

R b
a
f(t)g(t)dt =

f(a)
R c
a
g(t)dt+ f(b)

R b
c
g(t)dt.

2.3.2 Fundamental Theorem of Calculus

Theorem 76 (The First Fundamental Theorem of Calculus) A real-valued function F is de�ned on a closed
interval [a; b] by setting, for 8x 2 [a; b],

F (x) =

Z x

a

f(t)dt

where f is a real-valued function continuous on [a; b]. Then, F is
1. continuous on [a; b],
2. di¤erentiable on the open interval (a; b),
3. F

0
(x) = f(x).

(For more general case: if f is any Lebesgue integrable function on [a; b] and x0 is a number in [a; b] such
that f is continuous at x0, then F (x) =

R x
a
f(t)dt is di¤erentiable for x = x0 with F

0
(x0) = f(x0))

Theorem 77 (The Second Fundamental Theorem of Calculus) Let f be a real-valued function de�ned on a
closed interval [a; b] that admits an antiderivative F on [a; b]. That is, f and F are functions such that for
8x 2 [a; b], f(x) = F

0
(x). If f is integrable on [a; b] then

R b
a
f(t)dt = F (b)� F (a)

(Notice: if f is continuous, then f is integrable. However, not all integrable f are continuous)
(For more general case: if a real function F on [a; b] admits a derivative f(x) at every point x of [a; b]

and if this derivative f is Lebesgue integrable on [a; b], then
R b
a
f(t)dt = F (b)� F (a))

Theorem 78 (Di¤erentiation under Integral) Let F (x) =
R b(x)
a(x)

f(x; t)dt, then:

d

dx
F (x) =

�
@F

@b

�
db

dx
+

�
@F

@a

�
da

dx
+

Z b(x)

a(x)

@f(x; t)

@x
dt

= f(x; b(x))
db(x)

dx
� f(x; a(x))da(x)

dx
+

Z b(x)

a(x)

@f(x; t)

@x
dt

11
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2.3.3 Derivative

Theorem 79 Di¤erentiation rules:

� Sum rule: (af + bg)
0
= af

0
+ bg

0

� Product Rule: (fg)0 = f
0
g + fg

0

� Quotient Rule: if g 6= 0, then ( fg )
0
= f

0
g�fg

0

g2

� Chain Rule: if f(x) = h(g(x)), then f(x) = h
0
(g(x)) � g0(x),

� Power Rule: (fg)0 = fg(g
0
ln f + g

f f
0
)

� Inverse Function Rule: (f�1)0 = (f 0)�1 ( or, equivalently, Df�1(y) = [Df(x)]�1)

� Implicity Function Rule: if implicit function y(x) is de�ned as F (x; y(x)) = 0, then y
0

x = �F
0
x

F 0
y

=

�@F
@x =

@F
@y (or, equivalently, Dxy = �[DyF (x; y)]

�1DxF (x; y))

De�nition 80 Let f : RN ! RM be di¤erentiable, then the Jacobian of f at x� denoted by Jf(x�), is
the M �N matrix of partial derivatives of f at x�

Jf(x�) =

24 D1f1(x
�) ::: DNf1(x

�)
::: ::: :::

D1fM (x
�) ::: DNfM (x

�)

35
De�nition 81 Let f : RN ! R be twice di¤erentiable,then the Hessian of f at x�, denoted by Hf(x�),
is the twice di¤erential matrix of f at x�

Hf(x�) =

24 D2
11f(x

�) ::: D2
1Nf(x

�)
::: ::: :::

D2
N1f(x

�) ::: D2
NNf(x

�)

35
Theorem 82 (Young�s Theorem) Let f : RN ! R be C2. THen the Hessian of f is symmetric: D2

ijf(x
�) =

D2
jif(x

�) for 8i; j.
Theorem 83 (Taylor�s Theorem) If n � 0 is an integer and f is a function which is n times continuously
di¤erentiable on the closed interval [a; x], and (n+ 1) times di¤erentiable on the open interval (a; x), then

f(x) = f(a) +
f (1)(a)

1!
(x� a) + f (2)(a)

2!
(x� a)2 + :::+ f (n)(a)

n!
(x� a)n +Rn(x)

where Rn(x) is reminder term, which can be expressed by either one of the following terms:

� Lagrange Form: Rn(x) = f(n+1)(�)
(n+1)! (x� a)

n+1 where � 2 [a; x]

� Cauchy Form: Rn(x) = f(n+1)(�)
n! (x� �)n(x� a) where � 2 [a; x]

� Generazed Cauchy Form: Rn(x) = f(n+1)(�)
n! (x��)n G(x)�G(a)

G0 (�)
where � 2 [a; x] and G(t) is a continuous

function on [a; x] with non-vanishing derivative on (a; x)

De�nition 84 The directional derivative of f in the direction of v at the point x is the limit

Dvf(x) = lim
h!0

f(x+ hv)� f(x)
h

Theorem 85 If all the partial derivatives of f exist and are continuous at x, then they determine the
directional derivative of f in the direction v by the formula:

Dvf(x) = v � rf(x) =
Xn

j=1
vj
@f

@xj
= cos � krf(x)k kvk

(If kvk = 1, then Dvf(x) = v � rf(x) = cos � krf(x)k, where � is the angle between rf(x) and v.)

12
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2.3.4 Integral

Theorem 86 Integral Rules:

� Reversing Limits of Integration:
R b
a
f(x)dx = �

R a
b
f(x)dx

� Integrals over intervals of length zero:
R a
a
f(x)dx = 0

� Linearity:
R b
a
(�f(x) + �g(x))dx = �

R b
a
f(x)dx+ �

R b
a
g(x)dx

� Additivity:
R b
a
f(x)dx =

R c
a
f(x)dx+

R b
c
f(x)dx

� Integral by Parts:
R
udv = u � v �

R
vdu

� Integral by substitution:
R b
a
f(g(x))dg(x) =

R g(b)
g(a)

f(x)dx

Theorem 87 In equalities for Integrals:

� Upper and Lower bounds: if m � f(x) �M for 8x 2 [a; b], then

m(b� a) �
Z b

a

f(x)dx �M(b� a)

� Inequalities between functions: if f(x) � g(x) for 8x 2 [a; b], thenZ b

a

f(x)dx �
Z b

a

g(x)dx

� Subintervals: if [c; d] is subinterval of [a; b] and f(x) is non-negative for 8x, thenZ d

c

f(x)dx �
Z b

a

f(x)dx

� Cauchy-Schwarz Inequality: Z b

a

f(x)g(x)dx

!2
�
 Z b

a

(f(x))
2
dx

! Z b

a

(g(x))
2
dx

!

� Holder�s Inequality: if p and q are two real numbers: 1 � p; q � 1 with 1
p +

1
q = 1, then����Z f(x)g(x)dx

���� � �Z jf(x)jp dx
�1=p�Z

jg(x)jq dx
�1=q

� Minkowski Inequality: If p � 1 is a real number, then�Z
jf(x) + g(x)jp dx

�1=p
�
�Z

jf(x)jp dx
�1=p

+

�Z
jg(x)jp dx

�1=p

13
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2.3.5 Multivariate Di¤erentiation

2.4 Inverse Function Theorem

Theorem 88 (Inverse Function Theorem) Fix x� 2 Rn, let f : Rn ! Rn be Cr, where r is a positive
integer, let y� = f(x�), and suppose Df(x�) is invertible. Then there are open sets U; V � Rn, with x� 2 U
and y� 2 V , such that Df(x) has full rank for all x 2 U , f maps U 1-1 onto V , and hence has an inverse
f�1 : V ! U . futhermore, f�1 is Cr.

In the result, "Then there are open sets U; V � Rn, with x� 2 U and y� 2 V , such that Df(x) has full
rank for all x 2 U , f maps U 1-1 onto V " are inherited from the assumption "Fix x� 2 Rn, let f : Rn ! Rn

be Cr, where r is a positive integer, let y� = f(x�), and suppose Df(x�) is invertible". The importance of
inverse function theorem is the last sentence "and hence has an inverse f�1 : V ! U . futhermore, f�1 is
Cr.", which point out the existence of inverse and the continuous of the inverse.
Use Inverse function theorem, we can use chain rule to computer Df�1(x) even if we can not derive f�1

explicitly. For example, if Df(x�) is invertible, f�1(x) is well de�ned by inverse function theorem. So let
h(x) = f�1(f(x)), because f�1(f(x)) = x, we have Dh(x) = Df�1(f(x)) =

Chain Rule
Df�1(y)Df(x) = I.

Hence, Df�1(y) = [Df(x)]�1.
Df(x�) of being full rank is not necessary condition for existence of an inverse function, f�1(x�). However,

Df(x�) of being full rank is necessary and su¢ cient condition for f�1(x�) being di¤erntiable.

2.5 Implicit Function Theorem

Theorem 89 (Implicit Function Theorem) Let O be a nonempty open subset of RL+M . Let f : O ! RN

be Cr, where r is a positive integer. Fix x� 2 O and let f(x�) = y�.If Df(x�) has full rank of M (if M = 1,
then the condition becomes Df(x�) 6= 0), then there is an open set W in RL+M such that the restriction of
the level set f�1(y�) to W is the graph of a Cr function.
In particular, suppose, for concreteness and simplicity of notation, that the last M columns of Df(x�)

(the x� columns) are linearly independent, hence has full rank of M . Then there are open sets U � RL and
W � RL+M , and a Cr function  : U ! RM such that, D�f(x) has full rank for all x 2 U , and
1. x�� 2 U; x� 2W ,
2.  (x��) = x��,
3. For any x 2W;x� 2 U ,
4. For any x� 2 U ,  (x�) is the unique x� such that, letting x = (x�; x�),
a). x 2W ,
b). f(x) = y�.

The implicity function theorem established the existance of implicity function  and the di¤erentiability
of  , which is Cr. The Implicity Function Theorem thus states that if f is continuously di¤erentiable and
the last M columns of Df(x�) has full rank, then the level set of f through x� is, near x�, an L-dimensional
suface in RL+M . Hence, we can express f function in terms of L-demension instead of original L+M-
demension. Also, by using  , we can write the last M variables of x as the a function of the �rst L variables
of  (�) : xL ! xM , where  (�) is Cr. Hence, the original variable x = (xL; xM ) = (xL;  (xL)).
Use Implicity function theorem, we can use the chain rule to calculate the implicite function,  : RL !

RM , even if we can not derive the implicite function,  ,explicitly. D (xL) = �[DMf(x)]
�1DLf(x).
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