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Chapter 1

Finite-Horizon MDP

In general, for the �nite-horizon problem with Markov Decision Process, we can

� Focus on MD policy;

� The optimal value function satis�es OE;

� The optimal policy is the solution of OE;

Hence, we can �rst write down the OE for this �nite-horizon problem, and then analyze OE and �nd the
policy or decision rule to solve for the OE. In �nding the optimal policy, we can �nd the structure of the
decision rule by using the techniques at the last of this notes.

1.1 Primliminary

The focus of dynamic programming is the sequential control (also known as dynamic or real time control)
of a discrete-time dynamic system with additive reward / cost1 .
In this chapter, we only focus on MDP: Markov Decision Processes: both the reward and transition

probability depend only on current state-action pair but not on the history of state-action sequence.
Hence, base on this MDP assumption, there must exist one optimal MD policy, so we only need to

consider MD policy within HR policy domain.2

De�nition 1 If time horizon, N <1, then it is �nite horizon DP model

De�nition 2 If time horizon, N =1, then it is in�nite horizon DP model

De�nition 3 We say the decision rule is History Dependent, H, if it is a decision rule depends on past
history.

De�nition 4 We say the decision rule is Markovian, M, if it is a decision rule depends on past only
through the current state s and currente stage t;

De�nition 5 A deterministic decision rule, D, is that a decision rule, dt(�), choose an action with
certainty;

De�nition 6 A randomized decision rule, R, is that a decision rule, dt(�), choose an action a 2 As
with probability q(a);

1 If the period cost is not additive or not separetable, then DP is not very e¢ cient tool.
2This assumption, MDP, is critial to prove MD policy is optimal within the domain of HR policy. (The main proof is Thm

4.4.2, which rely on the assumption of reward and transition probability depending only on current state-action pair.)
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1.2. MAIN RESULT M. M. Wei

De�nition 7 A history-dependent-deterministic, HD, rule is deterministic and depends on past his-
tory.

De�nition 8 A history-dependent-random, HR, rule is random and depends on past history.

De�nition 9 A markovian-deterministic, MD, rule is deterministic and depends on past only through
the current state s and currente stage t;.

De�nition 10 A markovian-random, MR, rule is random and depends on past only through the current
state s and currente stage t;.

De�nition 11 The open-loop policy is to select orders fa1; :::; aN�1g at once at time t = 1, without
observing demand.

De�nition 12 The close-loop policy is based on obvserved demand to make decision at the begining of
each time period and prescribed by a sequence of decision rules fd1; :::; dN�1g.

1.1.1 Notation
Parameter Explaination

N Time horizon or the number of times decisions is made
t Decision epoch, t = 1; 2; :::; N
st System state; observed at the beginning of period t
S State Space
at Control; decision to be selected at time t
As Action space of state s

rt(st; at) The reward / cost in time t (MDP)
rN (sN ) The terminal reward at the last period N

P (st+1jst; at) The transition probability (MDP)
dt(�) Decision rule at time t
� A policy: a sequence of decision rules to be used (� = (d1; :::; dN�1))

v�N (s) Expected total reward over N periods, given the system starts in state s and

policy � is used v�N (s) = E�s

hPN�1
t=1 rt(st; at) + rN (sN )

i
v�N (s) Optimal value function of expected total reward; v�N (s) = sup

�2�HR

v�N (s)

u�t (s) Expected total reward for using � from time t to the end of period N : u�t (s) =

E�s

hPN�1
n=t rn(sn; an) + rN (sN )

i
u�t (s) Best expected total reward attainable from time t to the end of period N :

u�t (s) = sup
�2�HR

u�t (s)

1.2 Main result

1.2.1 General Result

This section�s result build on the main assumption: reward and transition probability depending only on
current state-action pair. Hence, it is markov process.

De�nition 13 We say the reward is uniformly bounded if

jrt(s; a)j �M <1, for s 2 S and a 2 As

De�nition 14 We say the policy, ��, is an optimal policy if

v�
�

N (s) = v�N (s), for s 2 S
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1.2. MAIN RESULT M. M. Wei

Theorem 15 If rewards are uniformly bounded and in �nite horizon decision process, then v�N (s) is well
de�ned and always exists.

However, the optimal policy �� may not exist.

De�nition 16 A policy ��" is said to be "�optimal policy if

v
��"
N (s) + " > v�N (s), for s 2 S

Theorem 17 If rewards are uniformly bounded and in �nite horizon decision process, then there always
exists a "�optimal policy for any " > 0.

Algorithm 18 A �nite Horizon Policy Evaluation Algorithm:
1. Set t = N and u�N (s) = rN (s) for all s 2 S
2. if t = 1, stop, otherwise go to step 3;
3. reduce t by 1 and compute u�t (s) for each s by u

�
t (s) = rt(s; dt(s)) +

P
j2S p(jjs; dt(s))u�t+1(j);

4. return to step 2.

This algorithm reduce this multistage problems by evaluating a sequence of simpler, inductively de�ned
single-period problems.

Theorem 19 Let � 2 �HD and suppose that u�t (s) is obtained by using the policy iteration algorithm. Then
for all t � N ,

u�t (s) = E�s

�XN�1

n=t
rn(sn; an) + rN (sN )

�
(This theorem implies u�1 (s) = v�N (s))
(This theorem is still valid for � 2 �HR: Theorem 4.2.2 in Puterman)

De�nition 20 The optimality equations (AKA bellman equations) are de�ned as:

ut(ht) = sup
a2Ast

n
rt(st; a) +

X
j2S

pt(jjs; a)ut+1(ht; a; j)
o

(4.3.2)

for each history realization ht 2 Ht. The boundary conditions satisfy

uN (hN ) = rN (sN ) (4.3.3)

for each hN = (s1; a1; :::; sN�1; aN�1; sN )

Lemma 21 (Lemma 4.3.1) Let w be a real-valued function on an arbitrary discrete set W and q(�) be a
probability distribution on W . Then

sup
u2W

w(u) �
X
u2W

q(u)w(u)

Theorem 22 (Theorem 4.3.2) suppose ut is a solution of Equation (4.3.2) for t = 1; :::; N � 1, and uN
satis�es Equation (4.3.3), then
a. ut(ht) = u�t (ht) for all ht 2 Ht, t = 1; :::; N ;
b. u1(s1) = u�1(s1) = v�N (s1) for all s1 2 S.
(The part a means optimality equations has unique solution, which is u�t (ht) for all ht 2 Ht. )
(THe part b indicate that we can �nd the optimal value function v�N (s1) by solving optimality equation.)
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Theorem 23 (Theorem 4.3.3)(If the optimal policy exists: Optimal policy) suppose u�t ; t = 1; :::; N , are the
solutions of the optimality equations and �� = (d�1; :::; d

�
N�1) 2 �HD3 satis�es:

rt(st; d
�
t (ht)) +

X
j2S

pt(jjs; d�t (ht))u�t+1(ht; d�t (ht); j) (4.3.10)

= max
a2Ast

n
rt(st; a) +

X
j2S

pt(jjs; a)u�t+1(ht; a; j)
o
; fort = 1; :::; N � 1

(we assume sup is attained, so the optimal policy exists) Then
a. For each t = 1; :::; N , u�

�

t (ht) = u�t (ht); ht 2 Ht;
b. �� is an optimal policy and v�

�

N (s) = v�N (s);8s 2 S.

Theorem 24 (Principle of Optimality: Bellman 1957) An optimal policy has the property that whatever the
initial state and initial decision are, the remaining decisions must constitute an optimal policy with regard
to the state resulting from the �rst decision.
(This is an implication of Theorem 4.3.3: at each decision epoch, the remaining decision (d�t ; :::; d

�
N�1)

must be optimal because of the construction of equation 4.3.10)

Theorem 25 (Theorem 4.3.4)(If the optimal policy doesn�t exist: "�optimal policy) Let " > 0. suppose
u�t ; t = 1; :::; N , are the solutions of the optimality equations and �

" = (d"1; :::; d
"
N�1) 2 �HD satis�es:

rt(st; d
"
t (ht)) +

X
j2S

pt(jjs; d"t (ht))u�t+1(ht; d"t (ht); j) +
"

N � 1 (4.3.10)

� sup
a2Ast

n
rt(st; a) +

X
j2S

pt(jjs; a)u�t+1(ht; a; j)
o
; fort = 1; :::; N � 1

Then
a. For each t = 1; :::; N � 1, u�"t (ht) +

(N�t)"
N�1 = u�t (ht); ht 2 Ht;

b. �" is an "�optimal policy and v�"N (s) + " � v�N (s);8s 2 S.

Theorem 26 (Theorem 4.4.2) Let u�t ; t = 1; :::; N , are the solutions of the optimality equations, Then
a. For each t = 1; :::; N , u�t (ht) depends on ht only through st;
b. For any " > 0, there exists an "�optimal policy which is deterministic and Markov
c. If there exists an a

0 2 Ast that satis�es

rt(st; a
0
) +

X
j2S

pt(jjs; a
0
)u�t+1(ht; a

0
; j)

= sup
a2Ast

n
rt(st; a) +

X
j2S

pt(jjs; a)u�t+1(ht; a; j)
o
, for t = 1; :::; N � 1

Then there exists an MD policy that is optimal.
(Hence, this theorem tell us that we can focus only on MD policy among HR policy: within the domain

of HR policy, we only need to consider MD policy (MD optimal policy or MD "�optimal policy).)

Theorem 27 (Thm 4.4.3) Assume S is �nite or countable, and that
a. As is �nite for each s 2 S, or
b. As is compact, rt(s; a) is continuous in a for each s 2 S, there exists an M <1 for which jrt(s; a)j �

M for all a 2 As; s 2 S; and pt(jjs; a) is continuous in a for each j; s 2 S and t = 1; :::; N , or
c. As is compact, rt(s; a) is upper semicontinuous in a for each s 2 S, there exists an M < 1 for

which jrt(s; a)j �M for all a 2 As; s 2 S; and pt(jjs; a) is lower semi-continuous in a for each j; s 2 S and
t = 1; :::; N , or
Then there exists a deterministic Markovian policy which is optimal.
(This theorem says when there exist a MD optimal policy, not only "�optimal policy )
3The reason why we can only consider HD policy instead of more general HR policy is because of Lemma 4.3.1. If there

existed a history-dependent randomized policy which satis�ed the obvious generalization of equation 4.3.10, as a result of
Lemma 4.3.1, we could �nd a deterministic policy which satis�ed equation 4.3.10.
Hence, we can only consider HD policy with in the domain of HR policy: HD is the dominant set in HR.
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Summary 28 1. u�t (s) is the unique solution of optimality equation (Thm 4.3.2 a);
2. The optimality equations can be used to determine the optimal policy when exists (Thm 4.3.3);
3. If the expected total reward under policy �, u�t (s), satis�es optimality equations for t = 1; :::; N then

� is optimal (Thm 4.3.3)
4. Backward induction provides an e¢ cient method for computing optimal value functions and policies;

(Thm 4.3.2 b)
5. We only need to consider MD policy within the domain of HR policy (Lemma 4.3.1 and Thm 4.4.2)

1.2.2 Deterministic systems (Perfect prediction of furture; non-stochastic):

Theorem 29 For deterministic system, since future is perfectly predictable, the reward achieved by an op-
timal closed-loop policy can also be achieved by an optimal open loop policy.

The �nite state deterministic systems can be represented by a graph and equivalent to a shortest path
problem. For example,

� shortest path problem,

� traveling salesman problem,

� four queues problem,

� sequential allocation problem,

� constrained maximum likelihood problem,

� Hidden markov Model;(In order to estimate the transition probability given the state transition obser-
vation) (Viterbi Algorithm)

� Convolutional coding and decoding

All above problem can be solved by backward DP algorithm (or equivalently the forward DP algorithm).
(those two algorithm is very simple, refer to Lecture (5) of Dr. Susan Xu�s handout.)

1.2.3 Non-deterministic System (Furture is uncertain; stochastic model)

If the optimal policy / best expected reward has no obvious structure, then we can use backward induction.
The backward induction assumes that maxima are obtained in

ut(ht) = sup
a2Ast

n
rt(st; a) +

X
j2S

pt(jjs; a)ut+1(ht; a; j)
o

so sup can be replaced by max so that we are assured to be able to �nd an MD optimal policy instead of an
"�optimal policy.

Algorithm 30 The Backward Induction Algorithm:
1. Set t = N and u�N (s) = rN (s) for all s 2 S
2. reduce t by 1 and compute u�t (s) for each s 2 S by

u�t (s) = max
a2Ast

n
rt(s; a) +

X
j2S

p(jjs; a)u�t+1(j)
o

(4.5.1)

set
Ast;t = argmax

a2Ast

n
rt(s; a) +

X
j2S

p(jjs; a)u�t+1(j)
o

(4.5.2)

and let d�t (st) 2 A�st;t;
3. if t = 1, stop. Otherwise return to step 2.
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Remark 31 Properties of backward induction algorithm:
a. It computes the expected total reward for the entire horizon and from each period to the end of the

horizon;
b. It determines the optimal policy �� as follows: A�st;t represents the set of all optimal actions in state

st at time t; Let d�t (st) 2 A�st;t, then the optimal policy is �
� =(d�1; :::; d

�
N�1);

c. Complexity: Assume K states in each period and L actions in each state: backward induction algorithm
requires (N � 1)LK2. (While direct evaluation of all MD policies require LK(N�1)(N � 1)K2)

If optimal policy / best expected reward has obvious speci�c structure (Such as Sequential allocation
problem), then we can use conjecture and induction:

1. We can use backward DP to calculate the last few periods�optimal policy / best expected reward for
those periods

2. then make conjecture of the structure of the optimal policy / best expected reward

3. use induction to proof the optimality of the conjecture.

Sample Problem:

� So who is counting problem

� A gambling model

� A card game (S. Ross, Introduction to DP)

� Optimal Stopping problem

� Secretary Problem (Hlynka and Sheahan 1988: the seretary problem for a random walk)

� A quality control model with learning e¤ects (C. Fine 1988: a quality control model with learning
e¤ects)

� Airline yield management / revenue managment (Lauterbacher and Stidham 1999: The underlying
MDP in the single-leg airline Yield Management Problem)
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Chapter 2

In�nite-Horizon MDP

The focus of dynamic programming is the sequential control (also known as dynamic or real time control)
of a discrete-time dynamic system with additive reward / cost.
In this chapter, we only focus on MDP: Markov Decision Processes: both the reward and transition

probability depend only on current state-action pair but not on the history of state-action sequence.
Also, In this chapter, we assume Stationary data: reward r(s; a), transition probability P (jjs; a), and

decision sets As do not depend on decision epoch t.
Analogous to �nite-horizon MDP, the optimal value function of expected total reward is de�ned as

v�(s) = sup
�2�HR

E�s

hX1

t=1
r(st; at)

i
= sup
�2�HR

lim
N!1

E�s

�XN

t=1
r(st; at)

�
, for s 2 S

However, in real practice, it will be more e¢ cient to consider the in�nite-horizon MDP by considering
the limit of the �nite period problem:

v�1(s) = lim
N!1

v�N+1(s) = lim
N!1

�
sup

�2�HR

E�s

�XN

t=1
r(st; at)

��
, for s 2 S

But, there are two technique problem:

1. Does the limit, v�1(s) = lim
N!1

v�N (s), exist?

2. If the limit exists, is it always true v�(s) = v�1(s)?

Hence, because of those two problems, the in�nite MDP has pitfalls:

� It is possible that v�(s) 6= v�1(s);

� The solution of the optimality equations may not be unique; 1

� the policy determined by the optimality equations may not be optimal ; 2

De�nition 32 A MDP model is said to be unstable (instability) if v�(s) 6= v�1(s) for some s.

Hence, if a MDP is unstable, using the limit of the �nite period problem to determine the in�nite-horizon
MDP is wrong. However, if we have stable problem, then it is directly to consider the limit of �nite period
problem. There are some ways, such as discounting, we can remove the instability of a MDP problem.

1 In �nite-horizon problem, by Theorem 4.3.2, the optimality has unique solution
2 In �nite-horizon problem, by Theorem 4.3.3, the policy determined by the optimality equations is optimal.
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2.1. USE FINITE COUNTERPART TO SOLVE FOR INFINITE PERIOD PROBLEM M. M. Wei

De�nition 33 Similarlly, we de�ne the optimal value function of a in�nite-horizon MDP as

For Expected Total reward: v�(s) = sup
�2�HR

v�(s)

For Expected Total discounted reward: v��(s) = sup
�2�HR

v��(s)

De�nition 34 We de�ne the optimal policy, �� 2 �HR;HD;MR;MD of a in�nite-horizon MDP as

For Expected Total reward: v�
�
(s) = v�(s)

For Expected Total discounted reward: v�
�

� (s) = v��(s)

Theorem 35 (Theorem 5.5.3) Suppose � 2 �HR, then for each s 2 S there exists a �
0 2 �MR (which

possibly varies with s) for which

a. v�N (s) = v�
0

N (s) for 1 � N <1; if rN (s) = 0 and v�(s) = lim
N!1

v�N (s) exists, v
�(s) = v�

0
(s);

b. v��(s) = v�
0

� (s) for 0 � � < 1;3

2.1 Use Finite counterpart to solve for In�nite Period problem

(This is a self summary of how to solve for in�nite problem from its �nite counterpart. And should be
veri�ed by reference for correctness.)
For a in�nite problem we want to �nd optimal value function, v(s), and optimal decision rule  such

that Optimality equation holds v (s) = r(s; a) + �
P
j2S p(jjs; a)v (j).

Hence, we �rst �nd its �nite period counterpart: ut(ht) = sup
a2Ast

n
rt(st; a) + �

P
j2S pt(jjs; a)ut+1(st; a; j)

o
and uN (sN ) = u�N (sN ) = rN (sN ). Then hypothesis the functional properties, such as convexity or monotone,
of rN (sN ). (As long as persevation holds, the functional properties can be transfered to the in�nite case.)

Base on those perfered properties, derive the optimal decision rule,  , for uN�1(sN�1) = sup
a2Ast

n
rN�1(sN�1; a) + �

P
j2S pt(jjsN ; a)uN (sN�1; a; sN )

o
such that u�N�1(sN�1) = rN�1(sN�1;  ) + �

P
j2S pt(jjsN ;  )uN (sN�1;  ; sN ). (Attainment holds). Then

check under optimal decision rule,  , whether u�N�1(sN�1) preserve the functional properties we assumed
for rN (sN ). (Check for perservation. The reason why we need preservation is that the optimal deci-
sion rule,  , may need certain functional properties hold for ut+1(st;  ; st+1) to be optimal for ut(st) =

sup
a2Ast

n
rt(st; a) + �

P
j2S pt(jjs; a)ut+1(st; a; j)

o
. So if persevation holds, the optimal decision rule,  , can

be recursively used as optimal decision rule as long as those functional properties holds.). If perservation
holds, then we can recursively induct this process for u�N�2(�), u�N�2(�), ::, u�1(�), such that the optimal
decision rule,  ,holds for every period and all u�i (�) perserve our assumed functional properties.

Remark 36 For each N , we have v�N (s) = u�1(s) , and the optimal decision rule,  , is optimal for v
�
N (s) and

v�N (s) perserve our assumed functional properties of rN (sN ). Let N ! 1, and let v�1(s) = lim
N!1

v�N (s), so

the optimal decision rule,  , is optimal for v�1(s) and the functional properties may be perserved for v
�
1(s):

(Some properties such as convexity and continuouty indeed preserved under limitation, but be alter other
possibilities.)
For stable problem, such as discounted problem, the optimal value function for in�nite problem, v�(s),

equals the limiting optimal value function, v�1(s). Hence, the optimal decision rule,  , is optimal for v
�(s)

and the functional properties may be perserved for v�(s).

3This means we only need to consider MR policy within the domain of all HR policy for expected total discounted reward,
expected total reward, and average reward models.
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2.2. THE EXPECTED TOTAL DISCOUNTED REWARD CRITERION MODEL M. M. Wei

Remark 37 For discounted problem, the above argument can be understand by using contraction mapping
argument.
For any terminal value function u�N (sN ) with some functional properties, if we can prove that there is opti-

mal decision rule,  , such that attainment holds: u�N�1(sN�1) = rN�1(sN�1;  )+�
P
j2S pt(jjsN ;  )u�N (sN�1;  ; sN ).

(Use simple notation, given some functional propperties for uN (sN ), the optimal decision rule hold for
u�N�1(�) = Au�N (�)). If we can prove perservation holds for the recursive relationship under optimal decision
rule,  , such that Au�N (�) has the same desired functional properties as u�N (�). Then Anu�N (�) for any n, will
have the desired functional properties as u�N (�) and decision rule,  , will be optimal for Anu�N (�) as well.
Under discount model, the optimal operator A is an ��contraction mapping. So there exists one and

only one �xed point such that v�(�) = lim
n!1

Anu�N (�) and v�(�) = Av�(�). Hence, v�(�) has the same functional
properties as u�N (�) (If those functional properties are perserved under limitation). And the optimal decision
rule,  , is optimal for v�(�).
Hence, for stable problem, such as discounted problem, OE is satis�ed, v�(�) = Av�(�), so the stationary

decision rule, ( ; ; :::), is optimal for the in�nite horizon problem. And v�(�) has the same functional
properties as u�N (�). (Hence, when solving �nite period counterpart, the terminal value function can be any
functional form and has any functional properties, as long as perservation holds, all those form and properties
will transfer to the optimal value function of the original in�nite periods model.)

2.2 The expected total discounted reward criterion model

In general, for in�nite-horizon discounted total reward problem, the major result is in theorem 43. In
summary, we can �rst write the OE and then �nd the stationary policy that satis�es OE. Similarly, we can
use the techniques at the end of this notes to �nd the structure of policy.

2.2.1 Main result

For the expected total discounted reward criterion, the MDP criteria fo a �xed policy is de�ned as

v��(s) = lim
N!1

�
E�s

�XN

t=1
�t�1r(st; at)

��
, for s 2 S, 0 � � < 1, and � 2 �HR

Two ways of interpretation of discounting:

� Time value, so the reward is discounted;

� The horizon length is random (system earning is undiscounted reward, but the total horizon lenght it
alive is random.)

In thie section, the following assumption are assumed:

Conjecture 38 (Assumption 6.0.1)1. Stationary rewards and transition probabilities: reward r(s; a) and
transition probability P (jjs; a) do not vary from decision epoch to decision epoch;
2. Bounded rewards: jr(s; a)j �M <1 for all a 2 As and s 2 S ; 4
3. Discounting: future rewards are discounted according to a discounted factor �, 0 � � < 1.
4. Discrete state spaces: S is �nite or countable.5

Theorem 39 (Proposition 6.2.1) For expected total discounted reward criterion model, under the assumption
6.0.1 and 0 � � � 1, there exists a Markov deterministic policy, MD, with the same optimal value function
as MR policy. 6

4Can be generalized under some circulstance
5Can be generalized under some circulstance
6So, we only need to consider the MD policy within the domain of HR policy

10
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So, we can only consider MD policy within the domain of HR policy because of theorem 5.5.3 and
proposition 6.2.1 under assumption 6.0.1:

v��(s) = sup
�2�HR

v��(s) = sup
�2�MD

v��(s)

Notation 40 The notation of this section is summarized as below:
Parameter Explaination

S State Space
� A policy: � = (d1; d2; d3:::; dN ; :::) 2 �MD

�
0

A reduced policy: �
0
= (d2; d3:::; dN ; :::) 2 �MD

d1 A stationary policy: � = (d; d; :::) = d1

v��(s) Expected total discounted reward given the system starts in state s and policy

� is used, v��(s) = r(s; d1(s)) + �
P
j2S pt(jjs; d1(s))v�

0

� (j)

v�� a jSj �vector, with the sth componenet v��(s)
rdt a jSj �vector, with the sth componenet rdt(s) = r(s; dt(s))
Pdt a jSj � jSj matrix, with the (s; j)th entry p(jjs; dt(s))

Hence, under the vector notation, we have

v�� = rdt + �Pdtv
�
0

� (s)

De�nition 41 A policy � is called stationary policy if � = �
0
. (equilvalently, � = (d; d; :::) = d1)

Theorem 42 (Evaluation of a stationary policy)(Theorem 2 of Dr. Susan Xu�s handout) vd
1

� is the unique
bounded solution of

v = rd + �Pdv, or equivalently v = (I � �Pd)�1rd
7

(Hence, the policy evaluation of a stationary policy is equivalent to solving a system of linear equations.)

Theorem 43 (Complete regularity of discounted MDP) (Optimality equations and optimal policy) (Theorem
4 of Dr. Susan Xu�s handout)
1. The optimal value function v�� is the unique bounded solution of the optimality equations:

v(s) = max
a2As

n
r(s; a) + �

X
j2S

p(jjs; a)v(j)
o

2. If for each s 2 S, d(s) is an action a 2 As that achieves the above max, then the deterministic
stationary policy � = d1 is optimal. That is v��(s) = vd

1

� (s)8

Sample Problem:

� Selling an asset;

� Interactive process quality (Marcellus and Dada 1991: management science 37, 1364-1376);
7The optimal value function is given by this equation, but we can not get the optimal value function from this equation

directly becasue we do not know the optimal policy and hence we do not know Pd and rd.
8This theorem means: 1. Optimal value function satisfy the optimality equations; 2. Optimal value function is the unique

solution of optimality equation; 3. the deterministic stationary policy identi�ed by the optimality equation is optimal (not all
optimal policy is stationary, but there exist one optimal policy which is stationary);

11
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2.2.2 Contraction Mapping and Discounted MDP

The result of Theorem 43 rest on a very well-known theorem: Banach Fixed-point Theorem.
Let V be the set of bounded and real valued functions on set S.

De�nition 44 For every function v 2 V , the supremum norm or sup norm of v is de�ned by

kvk = sup
s2S

jv(s)j

De�nition 45 A mapping T : V ! V is said to be a contraction mapping if there exists scalar 0 � � < 1
such that

kTu� Tvk � � ku� vk , for all u; v 2 V
(roughly speaking, a mapping is a contraction mapping if it can decrease or shrink the maximal distance

between its elements)

De�nition 46 An n�stage contraction mapping is de�ned as T : V ! V such that there is scalar 0 � � < 1
and

kTnu� Tnvk � �n ku� vk , for all u; v 2 V

For any stationary policy d1 = (d; d; :::) and v 2 V , de�ne two operators, Ld for expected discounted
return under a special stationary policy and L for expected discounted return under optimal stationary
policy, by:

Ldv = rd + �Pdv

Lv = max
d2DMD

frd + �Pdvg

Theorem 47 (Proposition 2 of Dr. Susan Xu�s handout) Both Ld and L are contraction mapping on V (V
is the set of bounded functions) for 0 � � < 1.

Theorem 48 (Banach Fixed Point Theorem) (Theorem 6 of Dr. Susan Xu�s handout) Suppose V is com-
plete, normed linear space (called banach space) and T is a contraction mapping9

a). There exists a unique function v� 2 V (called the �xed point of T ) such that Tv� = v�;
b). For any v0 2 V , lim

n!1

Tnv0 � v� = 0. In other words, Tnv0 converges to v� as n!1.

Theorem 49 (Theorem 5 of Dr. Susan Xu�s handout) Let v0 2 V , " > 0, and vn+1 = Lvn for n � 1. Then
a). vn converges in norm to v��,
b). There exists a �nite integer N such that

vn+1 � vn < "(1��)
2� , for n � N

c).
vn+1 � v�� < "

2 , for n � N
d). Let d1" = (d"; d"; :::) be the policy determined by the value iteration algorithm. Then d1" is an

"�optimal policy:
vd1"� � v��

 < "

Some Methods to determine whether a mapping is contraction mapping:

Let�s  : Rn ! Rn be a mapping, which we want to show is contraction mapping. De�ne the matrix of
derivatives of best response function as

A =

2664
0 @ 1=@x2 ::: @ 1=@xn

@ 2=@x1 0 ::: @ 2=@xn
::: ::: ::: :::

@ n=@x1 @ n=@x2 ::: 0

3775
9V is banach space, so it is normed linear space. However, T is not necessarily an linear mapping. E.g. Ld is linear mapping,

but L is non-linear mapping.

12
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and let �(A) = fmax j�j : Ax = �x; x 6= 0g, the largest absolute eigenvalues, states the spectral radius of
matrix A. Then, from Horn and Johnson 1996�s Matrix Analysis and Cachon and Netessine in chapter 2 of
Handbook of quantitative supply Chain Analysis, edited by Simchi-Levi, Wu, and Shen:

Theorem 50 The mapping  (x) : Rn ! Rn is contraction i¤ �(A) < 1.

Lemma 51 Let A be a matirx, �(A) is its spectral radius and kk is a consistent matrix norm. Then
1. for each k 2 N : �(A) �

Ak1=k ;8k 2 N .
2. lim

k!1
Ak = 0 i¤ �(A) < 1.

3. �(A) = lim
k!1

Ak1=k.
Hence, the most convience way to shown �(A) < 1 is by using the above lemma: �(A) � kAk by letting

k = 1 and consistent norm as the maximum column-sum and maximum row-sum norms10 . Hence, to verify
the contraction mapping, it is su¢ cient to verify that no column sum or no row sum of matirx A exceeds
one: Xn

i=1

����@ k@xi

���� < 1, or Xn

i=1

���� @ i@xk

���� < 1; for 8k
2.2.3 Computational Methods for Discounted MDP

Value Iteration (Successive approximation)

Algorithm 52 (Value Iteration Algorithm) Base on contraction mapping:
1. Select bounded function V 0, specify " > 0 and set n = 0;
2. For each s 2 S, compute vn+1(s) by

vn+1(s) = max
a2Ast

n
r(s; a) + �

X
j2S

p(jjs; a)u�t+1(j)
o

(i.e. vn+1 = Lvn)

3. If vn+1 � vn < "(1� �)
2�

then, go to step 4. Otherwise increment n by 1 and return to step 2.
4. For each s 2 S, choose

d"(s) 2 argmax
a2Ast

n
r(s; a) + �

X
j2S

p(jjs; a)u�t+1(j)
o

and stop.

By using value iteration algorithm, we can get an "�optimal policy, whose convergence is guaranteed by
Theorem 49.

Policy Iteration

Algorithm 53 The Policy Iteration Algorithm (Howard 1960)
1. Set n = 0 and select an arbitrary decision rule d0;
2. (Policy evaluation: solve the expected discounted reward for a particular stationary policy d1n ) Obtain

vd
1
n by solving the system of linear equations

vd
1
n (s) = r(s; dn(s)) + �

X
j2S

p(jjs; dn(s))vd
1
n (s), for j 2 S (i.e. v = Ldv)

10This is equal to letting k !1 and de�ne the norm as Euclidean norm.
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3. (Policy Improvement: �nd a new policy d1n+1 that improves d
1
n ) Obtain a new decision rule dn+1 to

satisfy

dn+1(s) 2 argmax
a2Ast

n
r(s; a) + �

X
j2S

p(jjs; a)vd
1
n (s)

o
, for j 2 S

setting dn+1 = dn if possible
4. If dn+1(s) = dn(s) for each s 2 S, stop and d� = dn. Otherwise increment n by 1 and return to step

2.

Theorem 54 1. Let vn and vn+1 be the successive values generated by the policy iteration algorithm. Then
vn+1 � vn.
2. If vn+1 = vn, then vn = vn+1 = v��;
3. If state space S and action space A are �nite, then the algorithm terminates in a �nite number of

iterations.11

Also, there are some other modi�ed policy iteration algorithm to take the advantage of value iteration
and policy iteration, such as "A Modi�ed policy iteration algorithm of order m" in Dr. Xu�s lecture 14.

Linear Programming

This method bases on the monotonicity property of contraction mapping, which states if v � u, then
Lv � Lu.12

Suppose v 2 V such that v � Lv. Then v � Lv � L2v � ::: � v�� as n ! 1. In other word, if v 2 V
such that v � Lv, then v is an upper bound of v��.

13

Also, v�� 2 V and v�� � Lv��, so it is the smallest solution for this monotonicity of contraction mapping.
So, this serves as the basis for linear programming formulation.

Algorithm 55 (Primal Linear Programming)8<:
min

P
s2S �sv(s)

s:t: v(s) � r(s; a) + �
P
j2S p(jjs; a)v(j), a 2 As and s 2 SP

s2S �s = 1 and �s > 0

9=;
�s is understood as the probability that the MDP start in state s 2 S.
(Dual Linear Programming)8<:

min
P
s2S

P
a2As

r(s; a)x(s; a)
s:t:

P
a2As

x(j; a)� �
P
s2S

P
a2As

p(jjs; a)x(s; a) = �j, j 2 SP
s2S �s = 1 and x(s; a) > 0, a 2 As and s 2 S

9=;
Theorem 56 (Primal LP)An optimal solution fv�(s); s 2 Sg to primal LP problem satis�es the optimality
equations, hence v� = v��.

Theorem 57 (Dual LP) 1. Any feasible dual solution x de�nes a stationary randomized policy d1x =
fdx; dx; :::g where

P (dx(s) = a) =
x(s; a)P

a02As
x(s; a0)

2. If x� is an optimal solution to the dual LP, then d1x� is an optimal policy;
3. There exists a bounded optimal basic feasible solution x� to the dual LP and d1x� de�ned by x

� is a
stationary deterministic optimal policy. (x� is basic feasible solution of an LP if it cannot be expressed as a
convex combination of any other solutions of the LP)
11Hence, the policy iteration has this major advantage over value iteration, which in general converges in an in�nite number

of iterations.
But in policy evaluation require solve jSj number of LP problem in policy iteration algorithm.
12This monotonicity is not hold in general for contraction mapping, but it is hold for the contraction mapping de�ned by

Lv = max
d2DMD

frd + �Pdvg. (Prove similar to Theorem 6.2.2)

13The condition, v 2 V such that v � Lv, is an assumption. So, we can �rst �nd a very large v so that using contraction
mapping operator L will lead to v � Lv.
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2.3 The expected total reward criterion models

We can only consider MD policy within the domain of HR policy because of theorem 5.5.3 and proposition
6.2.114 .
For the expected total reward criterion, the MDP criteria fo a �xed policy is de�ned as

v�(s) = lim
N!1

v�N+1(s) = lim
N!1

�
E�s

�XN

t=1
r(st; at)

��
, for s 2 S and � 2 �HR (5.2.1)

where v�N+1(s) is the extected total reward with N period and terminal reward 0.

Because the limit of equation 5.2.1 may diverge for some policies, we restrict attention to models in
which the limit exists for all polcies. Henc we need to provide a condition that ensures the limit exists.
let x+ = max fx; 0g and x� = max f�x; 0g. De�ne

v�+(s) = E�s

hX1

t=1
r+(st; at)

i
v��(s) = E�s

hX1

t=1
r�(st; at)

i
Hence, if, for all s 2 S and � 2 �HR, either v�+(s) or v��(s) is �nite, then the limit in equation 5.2.1

exists and satis�es
v�(s) = v�+(s)� v��(s)

Conjecture 58 (Assumption 7.1.1) For all s 2 S and � 2 �HR, either v�+(s) or v��(s) is �nite.

De�nition 59 For each s 2 S, there exists an a 2 As, for which r(st; at) � 0 and v�+(s) is �nite for all �.
Then it is called positive bounded models DP, because all rewards are positive.

De�nition 60 For each s 2 S and a 2 As, r(st; at) � 0 and for some �; v��(s) > �1 for all s. Then it is
called negative bounded models DP, because all rewards are negative and maximizing negative reward is
equivalent to minimizing positive cost. 15

De�nition 61 For each s 2 S, both v�+(s) and v
�
�(s) are �nite for all �. Then it is called convergent

model DP.

Theorem 62 (Theorem 7.1.3) (Optimality equation for total reward model) Suppose assumption 7.1.1 holds
(either v�+(s) or v

�
�(s) is �nite). Then the optimal value function v

� satis�es optimality equation:

v(s) = sup
a2Ast

n
r(s; a) +

X
j2S

p(jjs; a)v(j)
o
, for s 2 S

(Notes: v� is not the unique solution of OE, while in �nite-horizon model and in�nite-horizon discounted
models v� is the unique solution of OE. In fact, if v(s) is a solution of OE, then v(s) + c is also a solution
of OE)

Theorem 63 (Theorem 7.1.6) If �� 2 �HR is optimal. Then v�� satis�es the optimality equation.

De�nition 64 A decision rule d 2 DMD is conserving decision rule16 if

d(s) = argmax
a2Ast

n
r(s; a) +

X
j2S

p(jjs; a)v�(j)
o
, for s 2 S

14 In Proposition 6.2.1, the result hold for � = 1, which is the expected total reward criterion model
15The positive model and negative model are not equivalent with signs reversed. In positive models, we want to always

continuou to get positve reward to maximize total reward, while in negative models, we always want to �nd a policy to
terminate to stop costing more in the furture.
16Conserving decision rule is stationary policy.
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(In other words, d is conserving if it satis�es rd + Pdv� = v�)17

(By using conserving decision rule d for another period, we conserve the optimal reward v�)
(In the discounted case, a stationary policy d1 is optimal if and only if d is conserving)
(For expected total reward case, that d is conserving is a necessary condition, but not a su¢ cient condi-

tion.)

Theorem 65 (Theorem 7.1.7) (Optimal decision rule for total reward model)
a). (Necessary) If d1 is optimal, then d is conserving. In other word, if d1 is optimal, then

d(s) = argmax
a2Ast

n
r(s; a) +

X
j2S

p(jjs; a)v�(j)
o
, for s 2 S (7.1.9)

b). (Su¢ cient) if d is conserving and

lim
N!1

�
sup
s2S

Eds [v
�(sN+1)]

�
� 0 (7.1.10)

then d1 is optimal.
(Equation 7.1.10 means d drives the system to the states in which there is little opportunity for positve

future reward. v�(sN+1) means after N steps, the system arrive at state sN+1 and have the optimal value
function of v�(sN+1). Eds [v

�(sN+1)] means if the system start at state s and using decision rule d, then its
expected optimal value function after N steps is Eds [v

�(sN+1)])
(In discounted model, all decision rules are equalizing: lim

N!1

�P1
t=N �

t�1Eds r(st; d)
	
= 0)

(In negative model, v� � 0, so all the decision rules are equalizing; consequently, a conserving stationary
policy is optimal for a negative model)
(In positive model, if d is conserving and equalizing, then d1 is optimal).

De�nition 66 A decision ruleis said to be equalizing decision rule, if it satis�es equation 7.1.10.

2.3.1 Positive Bounded DP models (max reward)

In this section, we focus our attention on positve bounded DP models, which must satis�es the following
assumption:

Conjecture 67 1. (Assumption 7.1.1) For all s 2 S and � 2 �HR, either v�+(s) or v��(s) is �nite.
2. (Assumption 7.2.1) v�+(s) is �nite for all � 2 �HR and s 2 S;
3. (Assumption 7.2.2) For each s 2 S, there exists at least one a 2 As with r(s; a) � 0

Let V + be the set of nonnegative bounded functions.

Theorem 68 (Theorem 7.2.2) Let v 2 V + be any function satisfying v > max
d2D

frd + Pdvg = Lv, then v � v�

Because v� satis�es OE and v� 2 V +, we have the following theorem

Theorem 69 (Theorem 7.2.3)
a). v� 2 V + is the smallest non-negative solution of the Optimality Equation.
b). vd

1 2 V + is the smallest nonnegative solution of v = rd + Pdv = Lv

Theorem 70 (Theorem 7.2.5 )(Optimal policy)18

a). (Thm 7.1.7) If d is conserving and equalizing, then the stationary policy d1 is optimal.
b). (Thm 7.1.6) A policy �� is optimal if and only if its value function satis�es OE: v�

�
= max
a2Ast

�
rd� + Pd�v

��
	
19

17v�(s) is de�ned as v�(s) = max
a2Ast

n
r(s; a) +

P
j2S p(jjs; a)v�(j)

o
, so if d is conserving, then d solves this problem and,

hence, v�(s) = r(s; d) +
P
j2S p(jjs; d)v�(j)

18There is no guarantee that there exists a stationary optimal policy, but if there is stationary policy which is conserving and
equalizing, then it is optimal.
19This means there may be some policy, which is not stationary (hence, not conserving and equilizing), is optimal i¤ it satis�es

OE.
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Theorem 71 (Theorem 7.2.12) (Primal theorem for Value iteration algorithm) In a positve bounded model,
let v0 = 0 and set vn+1 = Lvn. Then vn converges pointwise and monotonically to v�.

Computational methods

The computational methods are similar to Discounted model with some modi�cation, so they are ignored
here. Please refer to Dr. Xu�s Notes. (Lecture 16)

2.3.2 Negative Bounded DP models (min cost)

In this section, we focus our attention on negative bounded DP models, which must satis�es the following
assumption:

Conjecture 72 1. (Assumption 7.1.1) For all s 2 S and � 2 �HR, either v�+(s) or v��(s) is �nite.
2. v�+(s) = 0 for all s 2 S and all � 2 �HR and s 2 S;
3. there exists a � 2 �HR with v�(s) > �1 for all s 2 S,

Similarly, as discussed in the general case for expected total reward model, the negative models

� The optimal value function in a negative model satis�es the optimality equation

� the solution of OE for the negative model is not unique

� Stationary policy derived from OE is optimal.

Similar to Positve bounded DP models, Let V � be the set of nonpositive functions (maybe unbounded).
we have the following two theorem (Thm 7.3.2 and Thm 7.3.3)

Theorem 73 (Theorem 7.3.2) Let v 2 V � be any function satisfying v � max
d2D

frd + Pdvg = Lv, then v � v�

Because v� satis�es OE and v� 2 V �, we have the following theorem

Theorem 74 (Theorem 7.3.3)
a). v� 2 V � is the maximal nonpositive solution of the Optimality Equation.
b). vd

1 2 V � is the maximal nonpositive solution of v = rd + Pdv = Lv

Computational methods

The computational methods are similar to Discounted model with some modi�cation, so they are ignored
here. Please refer to Dr. Xu�s Notes. (Lecture 17)

Result Discounted Models Positive Bounded Mod-
els

Negative Models

Optimality
Equations

v� is the unique solution
of OE in V

v� is minimal solution of
OE in V +

v� is maximal solution of
OE in V �

Optimal pol-
icy

d is conserving d is conserving and
equalizing

d is conserving

Value Iter-
aton con-
verges

If initial value function
v0 2 V

If initial value function
0 � v0 � v�

If initial value function
0 � v0 � v� and either
A or S �nite

Policy Itera-
ton conver-
gence

New policy always im-
proves old policy. Find
opt policy if termination
occurs

New policy may not be
an improvement of old
policy. Find opt policy if
termination occurs

New policy improves the
old policy. But may ter-
minate at a suboptimal
policy

Solution by
LP

Yes Yes No
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Chapter 3

Techniques

3.1 How to get optimal policy structure propeties

3.1.1 Conjecture and Induction

If optimal policy / best expected reward has obvious speci�c structure (Such as Sequential allocation prob-
lem), then we can use conjecture and induction:

1. We can use backward DP to calculate the last few periods�optimal policy / best expected reward for
those periods

2. then make conjecture of the structure of the optimal policy / best expected reward

3. use induction to proof the optimality of the conjecture.

3.1.2 Use �nite-horizon model to get the structure of in�nite-horizon model
structure.

This method still holds for in�nite-horizon model, in which we can use �nite-horizon counterpart, and make
conjecture on the �nite-horizon counterpart. Then we can proof our conjecture for in�nite-horizon model.
If the discounted MDP is stable, then vn� ! v�� as n ! 1. So the v�� will inherit the same property of

vn� , and there exists an optimal stationary policy with the same special structure. This idea has been used
extensively in inventory theory, equipment maintenance models, and queueing control. For example, if vn� is
increasing as n!1, then v�� is increasing.

3.1.3 Monotone optimal policy (base on supermodular function)

In MDP, the optimality equations are de�ned by

u�t (s) = max
a2Ast

n
rt(s; a) +

X
j2S

p(jjs; a)u�t+1(j)
o

| {z }
=wt(s;a)

And the optimal decision rule is de�ne as

d�t (s) = argmax
a2Ast

n
rt(s; a) +

X
j2S

p(jjs; a)u�t+1(j)
o

| {z }
=wt(s;a)

If wt(s; a) is supermodular function, then d�t (s) is monotone increasing.
For proof wt(s; a) of supermodular, please refer to "Study notes for basic mathematics" section 1.2.1:

supermodular function;
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For proof d�t (s) of the is monotone increasing and monotone increasing in other cases, please refer to
"Study notes for basic mathematics" section 1.2.2: properties under optimization;

3.1.4 Myopic Policies (Base on Chapter 6 of Porteus)

Notation 75 st+1 = z(a;Xt): st+1 is next state given current state is Xt and action a is given;
A� =

S
s2S A(s): The union of all feasible decision for some set of state S (This set of states can be

subset of all states);
S(a) = fs 2 Sja 2 A(s)g: the set of states for which action a is admissible;
rS(s): separatable immediate reward / cost with respect to states;
rA(a): separatable immediate reward / cost with respect to action;
 (a) = rA(a) + �E[rS(z(a;X))]: Truncated reward function;
a�: a maximizer of  (�);

Theorem 76 (Veinott, 1965; Sobel, 1981) If the following two conditions hold:
1. Immediate reward / cost is additively separatable: r(s; a) = rS(s) + rA(a);
2. Transition depends on current period state and action: P (jjs; a) = P (jjs; a; ht�1);
3. z(a�; X) 2 S(a�) for every realization of X; (This means if system starts in S(a�) and the admissible

decision a� is made, then the next state vistied will be in S(a�). Hence, S(a�) is called the set of consistent
states.)
4. vT (s) = rS(s) for all s;
Then There exists an optimal policy that selects action a� whenever a consistent state is visited.
In particular, action a� is optimal at state s for all s 2 S(a�). Futhermore, once a consistent state is

visited, then only consistent states will be visted thereafter.
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