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Although the online marketplaces have flourished, the role of product and market information in how it

affects an online marketplace and how it can be leveraged to improve the sales or sales volume of the platform

has not been explored in the prior research. We study how the provision of product and/or market infor-

mation affects buyers’ and sellers’ behavior in an online marketplace by establishing the (Pareto-dominant)

equilibrium for the sellers’ pricing decisions under various information structures. Our main findings are as

followings. First, we show that in equilibrium while sales volume of the platform increases in both the size

of the buyers’ pool and the size of the sellers’ pool, sales increase only in the size of the buyers’ pool and

are unimodal in the size of the sellers’ pool. Second, by analytically characterizing the platform’s optimal

information strategy as a function of the underlying market parameters and whether the platform’s goal is

to maximize sales or sales volume, we find that providing product and/or market information may backfire

on the platform by jeopardizing its financial performance. Third, we demonstrate using numerical studies

that information is more valuable to the platform when the goal of the platform is to maximize sales rather

than sales volume, and when it faces a seller’s market (i.e., demand-to-supply ratio is greater than one)

rather than a buyer’s market (i.e., demand-to-supply ratio is less than one).

Key words : online marketplace; information strategy; equilibrium analysis; value of information.

1. Introduction

The rise of the Internet has created a spurt for online marketplaces, with 97% of U.S. consumers

who shop online do so in a marketplace as of 2017 (Ali 2018). An online marketplace is a website or

a mobile application where potential buyers have access to buy products offered by many different

sellers. The operator of a marketplace typically operates on a consignment basis, meaning that it

does not own the inventory. Rather, the operator provides a platform for sellers and buyers to list

and browse products, respectively, and for the two sides to execute secure transactions. Leading

online marketplaces include Alibaba (Taobao), Amazon Marketplace, eBay, and JD.com, but there

are many others such as Buy.com, Etsy, Newegg, Rakuten, Shopify, Swappa, just to name a few. To
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put things in perspective, half of all online sales in 2016 occurred in online marketplaces (Howland

2017), with this number only expected to grow moving toward 2020.

Typically, an online marketplace makes money by either charging customers a fixed commission

(i.e., fee per transaction) or a proportional commission (i.e., fee as a percentage of sales). When

a fixed commission is charged by the online marketplace (e.g., Swappa), the platform’s revenue

increases proportionally with the increase in total sales volume (i.e., total number of transactions).

In comparison, if a proportional commission is charged (e.g., eBay), the platform’s revenue increases

proportionally with total sales (i.e., total dollar amount of all transactions). As a result, sales and

sales volume are the standard metrics to measure the platform’s financial success.

To attract sellers and buyers to visit its platform and complete transactions, an online market-

place can invest in platform resources and technology. The online marketplace can also leverage

different information structures to increase sales and/or sales volume, which is the core focus of

our study. In particular, we distinguish two types of information that can be provided by an online

marketplace on its platform, namely, product information and market information.

Product information, in this paper, refers to detailed description of a product in addition to

any basic textual information. It can include technical specifications and product demonstrations

shown in graphics and videos as well as Q&A’s and customer reviews that will allow customers

to better understand and evaluate the product according to their individual needs. Without such

information, the buyers may not be able to accurately value the product which ultimately will

affect their willingness-to-pay for the product. Although some online marketplaces allow individual

sellers to post the product information on their own, we focus in this paper on the ones where

it is the platform that determines the amount and type of product information to be released.

Examples of such online marketplaces include Amazon, Submarino (leading online marketplace in

Brazil), Real.de (top online marketplace in Germany) and many others. Interestingly, while Amazon

provides product information (videos, Q&A’s, and customer reviews) on its website, Submarino and

Real.de do not1, illustrating that these platforms have the ability to control product information.

Market information, on the other hand, refers in this paper to the actual demand and supply of a

product in the online marketplace. This information can be obtained by the platform through real-

time data collection (i.e., tracking website visitors and product listings) and analysis (i.e., deploying

machine learning algorithms). For example, Google Analytics or equivalent in-house data tools can

inform a platform how many visitors are on a particular product page in real-time (Lovestrand

1 For example, see the respective listing for Bose QuietComfort 35 Series II Wireless Headphones at
Amazon (https://www.amazon.com/Bose-QuietComfort-Wireless-Headphones-Cancelling/dp/B0756CYWWD/ref=
sr_1_3?), Submarino (https://www.submarino.com.br/produto/37973955/fone-de-ouvido-bose-quietcomfort-
35-ii-wls-789564-0010-preto?), and Real.de (https://www.real.de/product/326945939/?).

 Electronic copy available at: https://ssrn.com/abstract=3259465 

https://www.amazon.com/Bose-QuietComfort-Wireless-Headphones-Cancelling/dp/B0756CYWWD/ref=sr_1_3?
https://www.amazon.com/Bose-QuietComfort-Wireless-Headphones-Cancelling/dp/B0756CYWWD/ref=sr_1_3?
https://www.submarino.com.br/produto/37973955/fone-de-ouvido-bose-quietcomfort-35-ii-wls-789564-0010-preto?
https://www.submarino.com.br/produto/37973955/fone-de-ouvido-bose-quietcomfort-35-ii-wls-789564-0010-preto?
https://www.real.de/product/326945939/?


3

2019). Note that the market information is not readily available to sellers and buyers unless the

platform, who owns the website of the online marketplace, chooses to release it. Releasing the

market information or not, is however a delicate decision of the platform because access to market

information could potentially change the sellers’ pricing decisions for a product as it enables them

to better estimate the relationship between the product’s selling probability and price.

Despite the unprecedented boom in the online marketplaces and the proliferation of information

in contemporary life, there is not much research on the role of product and market information

in an online marketplace and the resulting decisions of buyers and sellers involved in the existing

literature. To this extent, we take an important first step in this paper to understand the following

research questions:

Q1. How do sellers make their optimal pricing decisions under different product and market

information structures in an online marketplace?

Q2. What is the impact of information on sales and sales volume of the platform?

Q3. When should an online marketplace provide the buyers and sellers with product and/or

market information on its platform?

To address these questions, we develop a stylized model to capture four different information

structures of an online marketplace: (i) In the no-information case, the platform does not provide its

buyers and sellers with the product or market information; (ii) In the product-information case, only

the product information is provided to the buyers and sellers; (iii) In the market-information case,

only the market information is provided; and finally, (iv) In the product-and-market-information

case, both the product and market information is provided.

In the model, the number of buyers and sellers who join the platform are randomly determined

from a buyers’ pool and a sellers’ pool, respectively. The sellers make pricing decisions for their

products by considering not only buyers’ product valuations but also other sellers’ strategies,

necessitating an equilibrium analysis. While the market information directly changes sellers’ pricing

decisions in equilibrium, the product information directly changes buyers’ product valuations and,

therefore, indirectly affects the equilibrium prices and financial performance of the platform.

We report the following main results in this paper. First, the (Pareto-dominant) equilibrium is

established for the sellers’ pricing decisions under all information structures being investigated (no

information, product information, market information, product-and-market information). We find

that sales volume of the platform increases with the size of either the buyers’ pool or the sellers’

pool, however, sales of the platform only increase with the size of the buyers’ pool but exhibit a

non-monotonic pattern with an increasing size of the sellers’ pool.

Second, by comparing the sales and the sales volume between the different information structures,

we show that providing product and/or market information can actually be harmful to the platform.
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We further identify the optimal information strategy for the platform, which is governed by the

underlying market parameters. In particular, we find that it is optimal for the platform to provide

both the product and market information in a seller’s market and not to provide the product

information in a buyer’s market, regardless of whether the platform’s goal is to maximize sales

or sales volume. In addition, in a buyers’ market, providing the market information benefits the

platform only when its goal is to maximize sales, but not to maximize sales volume.

Finally, we quantify the value of information through numerical experiments. We observe that

under the same market parameters, information is more valuable to the platform when the goal

of the platform is to maximize sales rather than sales volume, and when it faces a seller’s market

rather than a buyer’s market.

The remainder of the paper is organized as follows. §2 reviews the related literature. §3 intro-

duces the model framework. §4 sets up the no-information case as a benchmark and formalizes

the performance metrics of the platform. §5 studies three informational cases. §6 derives the opti-

mal information strategy for the platform. §7 illustrates the value of information. And finally, §8

concludes the paper. Proofs are relegated to the Electronic Companion of the paper.

2. Literature Review

Our research is closely related to the literature on information control strategy, and we study two

types of information in this paper, namely product information and market information.

Provision of the product information can influence buyers’ product valuations. Lewis and Sap-

pington (1991, 1994) extend the principal-agent model to study the incentives of a seller to release

product information to potential buyers, concluding that the optimal product information decision

for the seller is an all-or-nothing strategy: either release all the product information or does not

release at all. Johnson and Myatt (2006) further justify the all-or-nothing product information

revelation strategy established in Lewis and Sappington (1991, 1994) by a U-shaped function of

dispersion for buyers’ valuations. In contrast to static models in which the seller and buyers inter-

act only once (as in Lewis and Sappington 1991, 1994 and Johnson and Myatt 2006), Chu and

Zhang (2011) develop a dynamic two-period model to study the joint impact of the optimal product

information strategy and the optimal pricing strategy under a preorder setting, finding that the

seller should release some product information or none, but should never release all information.

In this paper, we consider an online marketplace’s optimal product (and market) information rev-

elation strategy. Hence, different from the above-mentioned papers, the information in our case is

possessed by a two-sided market operator as opposed to a seller.

On the other side, provision of the market information can directly influence sellers’ decisions.

Research related to the market information in the Operations Management literature typically
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targets the demand-side market information (i.e., information regarding the number of end cus-

tomers). Information sharing decisions are typically studied under vertical supply chain settings,

where the downstream firm has the demand information and could potentially release it to the

upstream firm. There is an extensive literature on assessing the value of demand information

(see, e.g., Chen 1998, Gavirneni et al. 1999, Cachon and Fisher 2000, Lee et al. 2000, Zhao and

Simchi-Levi 2002, Li and Zhang 2013), and various mechanisms have been proposed to encourage

downstream firms to truthfully reveal and share demand information (e.g., Cachon and Lariviere

2001, Özer and Wei 2006). Different from this stream of literature, the platform considered in our

paper possesses both demand-side and supply-side market information and may decide to release

the market information to influence the equilibrium listing price distribution in the marketplace.

Our research is also broadly related to the literature of online marketplaces. A marketplace

can provide information to participating buyers and sellers to facilitate the exchange of products,

creating economic value for buyers, sellers, and society at large (Bakos 1991, 1998). Its role and

influential factors (such as market size, prices, commission model, product design, product ful-

fillment, etc.) have been an active research topic in the Economics, Operations, and Information

System literatures (see, e.g., Parker and Van Alstyne 2005, Hagiu 2009, Chen et al. 2016, Lai et al.

2018, Li and Netessine 2018, Xiao and Xu 2018). Recently, there is an increasing interest in study-

ing the influence of a marketplace under various supply chain strategies (see Grieger 2003, Wang

et al. 2008 for detailed reviews). For example, Ryan et al. (2012) consider a single retailer con-

templating selling through a new marketplace channel, in addition to a traditional direct channel,

to generate additional demand. The retailer either pays a fixed or proportional commission to the

platform in the dual-channel setting, and the authors characterize the optimal pricing decisions

for both the retailer and the platform. Jiang et al. (2017) consider a retailer who orders products

from a manufacturer and sells to customers through an online marketplace platform where the

customers can then resell products later on. In this case, the authors examine the impact of the

fixed commission charged by the platform for each transaction on consumer surplus and social

welfare. Different from these works, our paper focuses on the platform’s information strategies.

Another stream of the literature explores the determination of prices in the marketplaces (e.g.,

Campbell et al. 2005, Kuruzovich et al. 2010) and the design of efficient trading mechanisms to

match buyers and sellers (e.g., Wilson 1985, Chu and Shen 2006). In particular, McAfee (1992)

examines the efficiency of the double auction mechanism among buyers and sellers, and Su (2010)

proposes a matching mechanism in an online marketplace, which can be interpreted as a posted-

price mechanism with efficient rationing and retains similar matching outcome as the double auc-

tion. The matching mechanism adopted in our paper directly follows Su (2010).
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3. Model Framework

We consider an online marketplace (hereafter referred to as the“platform”). The platform orches-

trates a two-sided market where a number of sellers try to the same new product to a number of

buyers. Each seller has one unit of the product in stock, and each buyer is interested in one unit of

the product. Sellers and buyers make fully rational pricing and purchasing decisions, respectively,

in order to maximize their individual utilities. The platform on the other hand can influence the

decisions of both sides by providing (or not providing) product and/or market information. Details

on the information structure will be given shortly.

The number of sellers to join the platform is described by a random variable Ds, which follows

a uniform distribution between 0 and s, i.e., Ds ∼ U [0, s]. We will refer to s as the size of the

sellers’ pool hereinafter. Each seller sets a price p for the product she owns in order to maximize

her individual expected revenue, subject to a reservation value constraint. The reservation value,

denoted by vs, is idiosyncratically developed and represents the minimum price that a seller is

willing to go with for listing her product. Even though vs represents a deterministic value for

each seller, a distribution is formed among all potential sellers. We will normalize it to a standard

uniform distribution U [0,1] and denote the corresponding cumulative distribution function (CDF)

for vs as Fs(·).

Formally, consider an arbitrary seller with the reservation value vs. The goal of this seller is to

determine the listing price for the product, in order to maximize her individual expected revenue,

subject to the reservation value constraint, i.e.,

max
p
{p ·P (p)} subject to p≥ vs. (1)

Here in (1), P (p) denotes the probability of the seller successfully selling the product at price p and

it will be determined by the market force. In particular, P (p) depends on the pricing decisions of all

the sellers and the willingness-to-pay of all the buyers who join the platform. We will specify P (p)

in detail later in the paper when the equilibrium concept is introduced. For convenient reference,

the main notations used throughout the paper are summarized in Table 1.

The number of buyers that will join the platform is determined by a random variable Db ∼

U [0, b], where b will be referred to as the size of the buyers’ pool. Buyers are heterogeneous in their

valuations vb for the product. As there are multiple buyers and sellers in the marketplace, we follow

the matching mechanism developed in Su (2010) to determine the outcome of the transactions: the

product offered with the lowest price p (with ties broken randomly) will be acquired by the buyer

with the highest valuation vb (with ties broken randomly) as long as p≤ vb, and then the second

lowest-priced unit will be acquired by the buyer who has the second-highest valuation, and so on
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Table 1 Notations

Symbol Description

Ds ∼U [0, s] random number of sellers where s is the size of the sellers’ pool
p product listing price
vs sellers’ reservation value with CDF Fs(·)
P (p) probability of successfully selling the product at price p

F̃s(·), f̃s(·) CDF and PDF of the sellers’ equilibrium listing price distribution
Is ∈ {0,1} whether market information (for the sellers) is provided by the platform
Db ∼U [0, b] random number of buyers where b is the size of the buyers’ pool
vb buyers’ valuation for the product with CDF Fb(·)
pmax(db, ds) highest or maximum transaction price given market size realizations db, ds
Ib ∈ {0,1} whether product information (for the buyers) is provided by the platform
T expected sales
Q expected sales volume
Model N no-information model, i.e., Ib = 0 and Is = 0
Model P product-information(-only) model, i.e., Ib = 1 and Is = 0
Model M market-information(-only) model, i.e., Ib = 0 and Is = 1
Model B (both-)product-and-market-information model, i.e., Ib = 1 and Is = 1

and so forth, until there are no more available products, or no more available buyers, or the prices

of the remaining products are all higher than product valuations by the remaining buyers. Note

that this matching mechanism can be achieved by either a double auction (Wilson 1985, McAfee

1992) or efficient rationing (Su 2010), and the rational of this mechanism lies in the principle that

the higher-valuation buyers are more self-motivated to purchase the product, so they are more

likely to insert efforts to search for the product and/or make an earlier purchase, which typically

leads to a better price deal.

Next, we describe the platform which can provide or withhold two different types of information

on its website, namely, the (detailed) product information and the market information.

Product information refers to detailed product description and technical specifications, Q&A’s

about the product, and consumer reviews, all of which can facilitate the decision-making process of

the buyers. We use the indicator parameter Ib ∈ {1,0} to denote whether the product information

is provided by the platform. When buyers are better informed of the product, they will form more

accurate individual valuations of the product, i.e., the provision of product information to the

buyers leads to a larger spread of product valuations among them (Chu and Zhang 2011). For

example, consider two buyers interested in buying a printer where buyer one is looking for the

borderless printing feature and buyer two for the Ethernet networking. When the detailed product

information is provided, say the printer does support borderless printing but does not support

Ethernet networking, then the printer is deemed a higher valuation to buyer one than buyer two.

Therefore, when Ib = 1, through the detailed product information provided, the buyers can deduce

their exact valuations of the product, and we set vb ∼U [0,1] to model the buyers’ differing valuation

preferences of the product. In contrast, if the detailed product information is not provided by the
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platform, i.e., Ib = 0, the buyers cannot accurately assess whether the product will fulfill their

individual needs. In our example, it implies that buyer one and buyer two do not know if the

printer supports borderless printing or Ethernet networking. As a result, we assume for simplicity

that all the buyers will evaluate the product at the expected value of all possible valuations, i.e.,

vb ≡E(U [0,1]) = 0.5 for all buyers. We denote the CDF of buyers’ product valuation distribution,

regardless of its exact distribution (whether vb ∼U [0,1] or vb ≡ 0.5), as Fb(·).

Thanks to the development of data collection methods (including the visitor tracking technology

like Google Analytics or equivalent in-house data tools), the platform is able to observe how many

sellers and buyers are in the market, i.e., the realized market sizes of Ds and Db, which will be

denoted by ds and db respectively and referred to collectively as the market information. Provision

of the market information will have an impact on the sellers’ pricing decisions, because the sellers

are optimizing their strategies by taking into account the selling probability function P (·), see (1),

and P (·) depends on the platform’s information structure. We will use the indicator parameter

Is ∈ {1,0} to denote whether the platform reveals the market information to the sellers (and

buyers). In particular, if Is = 1, the sellers possess the information of the values of ds and db when

calculating P (·) and pricing their products accordingly. By contrast, if Is = 0, then what the sellers

know is only the distributional information, i.e., Ds (resp. Db) is uniformly distributed between 0

and s (resp. between 0 and b).

Note that the market information affects the sellers’ decisions but not the buyers’ product

valuations, so we choose to use Is to denote the corresponding revelation decision of the market

information by the platform. In comparison, the product information described earlier affects the

buyers by forming their product valuation distribution (which then indirectly affects the sellers’

decisions), so we use Ib to denote whether the product information is provided by the platform.

Furthermore, we have assumed uniform distributions to glean analytical results, however, our main

results are preserved under more general distributions such as the Beta distribution.

While each seller acts to maximize their expected revenue, so does the platform in our model.

In practice, marketplaces make money by charging customers for commissions/transaction fees.

Typically, the commission either increases proportionally with the transaction value (i.e., a per-

centage of sales) or is fixed (i.e., a flat fee per each transaction). Hence, we study the profitability

of the platform in our model by considering two performance metrics, namely sales (i.e., total dol-

lar amount of all transactions) and sales volume (i.e., total number of transactions). The optimal

commission problem is not considered in this paper, and it is clear that for any given commission

percentage (resp. flat fee), the platform’s revenue increases in the sales (resp. sales volume).

Finally, we summarize the sequence of events for our model which is captured in Figure 1.

First, the online marketplace determines whether it should provide product information and/or

 Electronic copy available at: https://ssrn.com/abstract=3259465 



9

Figure 1 Sequence of Events

svbv

bv p

p

bv

market information on its platform. Based on the availability of the product information, buyers

form their valuations for the product (vb). Then, random numbers of sellers and buyers (Ds and

Db) are realized. Next, the sellers make pricing decisions based on vb and the availability of the

market information, subject to their individual reservation value (vs). In particular, all sellers see

if product information is being offered by the platform to the buyers, so that the sellers can infer

whether vb ∼U [0,1] or vb ≡ 0.5. Each seller makes a rational and optimal pricing decision by taking

into account the other sellers’ strategies. We model such competitive interaction among the sellers

using the Nash equilibrium concept and refer to it as the sellers’ game. The CDF of the sellers’

listing price distribution in equilibrium is of our interest and will be denoted as F̃s(·). Lastly,

matchings/sales occur between the buyers and sellers based on the mechanism described earlier.

In what follows, we present four models to study the role of product and/or market information.

Specifically, §4 focuses on the no-information model as a benchmark, i.e., Ib = 0 and Is = 0, and §5

examines the other three (informational) models where Ib = 1 or/and Is = 1.

4. No-Information Model

We first consider the no-information model, or Model N , i.e., when Ib = 0 and Is = 0. Recall that

when the platform does not provide the product information, the buyers cannot accurately assess

their personal utilities of the product. Hence, they evaluate the product at its expected value, i.e.,

vb ≡ E(U [0,1]) = 0.5. On the other hand, without the market information, sellers only know the

distributional information of Db and Ds, but not the realized market size db and ds. The goal of this

section is to solve the sellers’ game, identify the matchings/transactions between the buyers and

the sellers, and evaluate the corresponding performance metrics under the no-information model.

First, we proceed to characterize the sellers’ pricing decisions in equilibrium.

Let F̃N
s (·) denote the CDF of the equilibrium listing price distribution of the sellers in Model

N (we use the superscript N to denote quantities under the no-information setting). Note that

the probability for any two sellers to have the same reservation value vs is zero, but sellers with
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different reservation values can impose the same listing price in equilibrium. The selling probability

function can be expressed as follows.

PN(p) =

 E
Ds,Db

[
1

{
Db ≥Ds · F̃N

s (p)
}]

if p≤ 0.5;

0 if p > 0.5,
(2)

where 1{·} is the standard indication function. Because vb ≡ 0.5, no buyer is willing to acquire

the product for a price higher than 0.5, thus the selling probability is zero when p > 0.5, which is

reflected by the second line of Eq. (2). If the listing price p is equal to or below 0.5, then whether

a unit gets sold or not depends on how many buyers and sellers join the platform. Based on the

matching mechanism described earlier, a unit will be sold at a price p ≤ 0.5 if the number of

buyers exceed the number of sellers who list the product for p or less, i.e., db ≥ ds · F̃N
s (p). Because

the realizations of Db and Ds are unknown to the sellers in the no-information model, the selling

probability PN(p) is given by the expected value of the corresponding indication function over Db

and Ds, hence the first line in Eq. (2).

Recall from (1) that any individual seller with reservation price vs rationally chooses a price p to

maximize her expected revenue p ·PN(p) subject to p≥ vs. Thus, the selling probability function

PN(·), given by (2), influences individual sellers’ pricing decisions. In the meantime, the pricing

decisions of all the sellers, characterized by CDF F̃N
s (·) in turn determine the selling probability

function PN(·). This necessitates an equilibrium analysis. An equilibrium of the sellers’ game is

reached when no individual seller can improve her expected revenue by unilaterally changing her

listing price, i.e., in equilibrium, Eqs. (1) and (2) must hold simultaneously.

Note that in Model N , the pricing decisions of the sellers whose reservation value vs > 0.5 are

irrelevant—because they are not willing to sell the product for a price of 0.5 or less and the buyers

are not willing to pay for anything more than 0.5, leading to no successful transactions. Without

loss of generality, we assume that these sellers will list and price their products at their reservation

values. In the following theorem, we capture the unique Pareto-dominant equilibrium for the sellers’

game under Model N which maximizes the sum of all sellers’ expected revenues among a continuum

of equilibria (see the proof of Theorem 1 in the Electronic Companion).

Theorem 1. When b≤ s/2, the sellers’ listing price distribution and the selling probability func-

tion of the unique Pareto-dominant equilibrium are given as follows:

F̃N
s (p) =


0 if 0≤ p≤ b

2s
2b
s

(
1− b

2s·p

)
if b

2s
< p≤ b

s

p if b
s
< p≤ 1

and PN(p) =


1 if 0≤ p≤ b

2s
b

2s·p if b
2s
< p≤ 0.5

0 if 0.5< p< 1

When b > s/2, they are given as follows:

F̃N
s (p) =


0 if 0≤ p≤ 0.5− s

8b
2b
s

(
1−

(
0.5− s

8b

)
1
p

)
if 0.5− s

8b
< p≤ 0.5

p if 0.5< p≤ 1

and PN(p) =


1 if 0≤ p≤ 0.5− s

8b(
1
2
− s

8b

)
1
p

if 0.5− s
8b
< p≤ 0.5

0 if 0.5< p≤ 1
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Figure 2 Illustration of F̃Ns (p), PN (p), and p ·PN (p) as functions of p in panels (a), (b) and (c), respectively.
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Note. In each panel, we plot three functions based on b = 1 and s∈ {1,2,3}.

There are a few important observations from the above theorem that we will now discuss in

details. An illustration of the results is provided in Figure 2.

First, there exists a threshold vs(=
b
2s

or 0.5− s
8b

) in both the b≤ s/2 case and the b > s/2 case

such that sellers with reservation values less than vs impose a strictly higher listing price (i.e.,

no less than vs) in equilibrium to achieve revenue maximization. In Figure 2/(a), vs corresponds

to the largest p such that F̃N
s (p) = 0. In particular, PN(p) = 1 for all p ≤ vs meaning that in

equilibrium any product offered at price vs or below will surely get sold to a buyer. However, no

seller, even if her reservation value is sufficiently low, has an incentive to lower her price to vs− ε1
where 0 < ε ≤ vs, because the expected revenue at vs − ε (i.e., (vs − ε) · PN(vs − ε) = vs − ε), is

strictly dominated by the expected revenue at vs (i.e., vs ·PN(vs) = vs). In addition, there exists a

second threshold v̄s(= 0.5 in Model N) such that all sellers with a reservation value vs ≤ v̄s list the

product for a price no higher than v̄s. This implies that any seller with a reservation value vs ≤ v̄s
cannot improve her expected revenue by unilaterally choosing a price v̄s + ε2 for 0< ε2 ≤ 1− v̄s,

i.e., (v̄s + ε2) · PN(v̄s + ε2) ≤ v̄s · PN(v̄s). In particular, for Model N, because PN(v̄s + ε2) = 0 for

0< ε2 ≤ 1− v̄s, we have (v̄s + ε2) · PN(v̄s + ε2) = 0, i.e., a seller’s expected revenue for a product

is zero when it is listed for anything more than 0.5 which is the maximum product price that the

buyers are willing to pay for.

Second, we observe that the selling probability function PN(p), although discontinuous at p= 0.5

(because anything more expensive than 0.5 has a zero selling probability), is non-increasing in

price; see Figure 2/(b). This is intuitive as a higher listing price for the (same) product corresponds

to a lower selling probability. However, the expected revenue, p ·PN(p), as a function of p exhibits

the shape of almost a trapezoid (with the right leg truncated), see Figure 2/(c), because p increases

while PN(p) weakly decreases in p. The highest expected revenue occurs at the top base of the

trapezoid in Figure 2/(c), which coincides with the interval [vs, v̄s] of sellers’ pricing decisions.
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Third, recall that b and s capture the sizes of the buyers’ pool and the seller’s pool, respectively.

As the number of buyers and sellers at the platform are determined by Db ∼U [0, b] and Ds ∼U [0, s],

we can use b and s to mirror the relationship between supply and demand. When b≤ s/2, because

supply far exceeds demand, the sellers have no choice but to list their products at lower prices

relative to the opposite case when b > s/2 (see Figure 2/(a) where F̃N
s (·) for the b ≤ s/2 case is

stochastically dominated by that for the b > s/2 case). This is due to a fierce competition among

the sellers. By contrast, when b > s/2, because there is relatively more demand, the sellers are

able to list their products for higher prices, and a portion of the sellers even charge a price that

is equivalent to the willingness-to-pay of the buyers (i.e., 0.5). These results can further generalize

to the following Corollary 1 on the usual stochastic order of F̃N
s (·) in b and s. Correspondingly,

the selling probability function PN(·) increases from the case of b≤ s/2 to the case of b > s/2, see

Figure 2/(b), and so does the expected revenue for the sellers (whose vs ≤ v̄s), see Figure 2/(c).

All of these are driven by the market force governed by b and s.

Corollary 1. Equilibrium listing prices (stochastically) increase in b and decrease in s, i.e.,

Pr(p > x) = 1− F̃N
s (x) weakly increases in b and decreases in s for all x∈ [0,1].

Finally, we point out that the proof of Theorem 1 is by no means straightforward. We provide the

complete proof of Theorem 1 together with proofs for all other results in the Electronic Companion

to the paper.

4.1. Performance Metrics

In this subsection, we study the profitability of the platform in our model by considering two

performance metrics, namely sales (i.e., total dollar amount of all transactions) and sales volume

(i.e., total number of transactions). More details on why they are of interest to us have been given

in §1 and will also be highlighted in §6.

In equilibrium, the sellers list their products according to prices determined by F̃N
s (·), and

the transactions between the sellers and the buyers occur in the increasing order of the listing

prices (from the lowest listing price to the highest). Let us denote pNmax(db, ds) as the maximum

transaction price given db and ds, i.e., the highest listing price at which a successful transaction

occurs. For notational convenience, we write p(·)max(db, ds) simply as p(·)max in the remaining paper

whenever doing so is not causing confusion. Two scenarios need to be discussed: (i) If buyers are

outnumbered by sellers whose listing price is no higher than the buyers’ product valuation 0.5 (i.e.,

if db ≤ ds · F̃N
s (0.5)), pNmax(≤ 0.5) can be determined uniquely by solving db = ds · F̃N

s (pNmax); (ii)

otherwise, (i.e., if db > ds · F̃N
s (0.5)), there are sufficient buyers to acquire all products that are

listed for 0.5 or below, and hence pNmax = 0.5.
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From Theorem 1, it can be verified that F̃N
s (·) is differentiable everywhere except at vs and v̄s.

Let f̃N
s (·) denote the corresponding probability density function (PDF). Then, the expected sales

volume in equilibrium, denoted by Q, is given by

QN=̇

∫∫
Db,Ds

qN(db, ds)dDbdDs where qN(db, ds)=̇

{
db = ds · F̃N

s (pNmax) if db ≤ ds · F̃N
s (0.5);

ds · F̃N
s (0.5) if db >ds · F̃N

s (0.5).

And the expected sales in equilibrium, denoted by T , can be characterized by

TN=̇

∫∫
Db,Ds

tN(db, ds)dDbdDs where tN(db, ds)=̇

{
ds ·
∫ pNmax
0

x · f̃N
s (x) dx if db ≤ ds · F̃N

s (0.5);

ds ·
∫ 0.5

0
x · f̃N

s (x) dx if db >ds · F̃N
s (0.5).

In the next result, we establish the impact of the sizes of the buyers’ pool (b) and the sellers’

pool (s) on QN and TN .

Proposition 1. Under the no-information model,

(i). The expected sales volume QN increases in b and s;

(ii). The expected sales TN increase in b and are unimodal in s.

Proposition 1/(i) is in line with expectations, given that when there is either more demand or

more supply to the platform, which is essentially a two-sided market, more transactions will occur

leading to a higher sales volume.

The more interesting result is Proposition 1/(ii) which states that sales are monotonic in the size

of the buyers’ pool but not in the size of the sellers’ pool. Intuitively, when there are more buyers

in the market (i.e., an increased b), equilibrium prices (Corollary 1) as well as the sales volume

goes up (Proposition 1/(i)), thus higher sales is expected as sales can be viewed roughly as the

multiplication of price and sales volume. Yet, when there are more sellers in the market (i.e., an

increased s), there are two competing forces which effect the sales. On one hand, equilibrium prices

go down (Corollary 1) due to increased competition among the sellers, and on the other hand, sales

volume picks up (Proposition 1/(i)). These two opposing effects lead to the non-monotonic behavior

of the sales with respect to s which first increases then decreases. It may also be helpful to think of

the limiting cases: (i) As s→ 0, there are no sellers in the platform so no sales occur; (2) as s→∞,

excessive sellers drive the listing/sales prices down towards zero, again yielding near zero dollar

sales for the platform despite a significant sales volume. The important managerial implication

here is that although increases in the size of the buyers’ pool should always be welcomed by the

platform, increases in the size of the sellers’ pool should be treated cautiously to avoid unintended

consequences on the sales.
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5. Informational Models

In this section, we will investigate how product information and/or market information influence

the sellers’ pricing decisions in equilibrium. Note that the impact of different information structures

on the sales and sale volume of the platform will be examined separately in §6. To this end, we

will propose and analyze three informational models (when Ib = 1 or/and Is = 1): the production-

information model in §5.1, the market-information model in §5.2, and the product-and-market-

information model in §5.3.

5.1. Product-Information Model

We start with the product-information(-only) model, or Model P , where the platform provides

the product information but not the market information (i.e., Ib = 1 and Is = 0). Specifically, with

the product information being provided, the buyers are able to accurately assess the product and

formulate an individual-specific product valuation. Therefore, different from Model N in §4 where

all buyers evaluated the product with the expected value 0.5, the buyers under Model P exhibit

heterogeneous product valuations, ranging uniformly from 0 to 1.

Let F̃P
s (·) denote the CDF of the equilibrium listing price distribution of the sellers in Model P

(superscript P represents the product-information setting). The selling probability function, given

earlier in (2) for Model N , needs to be updated to a general expression for Model P :

P P (p)=̇ E
Ds,Db

[
1

{
Db(1−Fb(p))≥Ds · F̃ P

s (p)
}]
. (3)

Eq. (3) reflects the notion that a product at price p gets sold, upon the realization of Db = db and

Ds = ds, if and only if the number of buyers whose valuation for the product exceeds p is greater than

or equal to the number of sellers who list the product for p or less, i.e., db(1−Fb(p))≥ ds · F̃P
s (p).

Following similar techniques used in the proof for Theorem 1, we can obtain the equilibrium

listing price distribution and the corresponding selling probability function for Model P .

Theorem 2. Under Model P , the sellers’ listing price distribution and the selling probability

function of the unique Pareto-dominant equilibrium are given as follows:

F̃P
s (p) =


0 if 0≤ p≤ b+s−

√
(2b+s)s

b

2b
s

(1− p) (1− b+s−
√

(2b+s)s

b·p ) if
b+s−
√

(2b+s)s

b
< p≤ 1−

√
s

2b+s

p if 1−
√

s
2b+s

< p≤ 1

and

PP (p) =


1 if 0≤ p≤ b+s−

√
(2b+s)s

b
b+s−
√

(2b+s)s

b
1
p

if
b+s−
√

(2b+s)s

b
< p≤ 1−

√
s

2b+s

1− s
2b

p
1−p

if 1−
√

s
2b+s

< p≤ b
b+s

b
2s

1−p
p

if b
b+s

< p≤ 1
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Figure 3 Illustration of F̃Ps (p), PP (p), and p ·PP (p) as functions of p in panels (a), (b) and (c), respectively.
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Note. In each panel, we plot three functions based on b = 1 and s∈ {1,2,3}.

The above result is illustrated in Figure 3. Similar to Model N , we observe that the sellers charge

higher prices in equilibrium when the size of the buyers’ pool (b) increases or the size of the sellers’

pool (s) decreases; see Figure 3/(a). This result is formalized as follows.

Corollary 1 is preserved under Model P , i.e., equilibrium listing prices under Model P (stochas-

tically) increase in b and decrease in s.

On the other hand, the selling probability function P P (p) is now positive for all p∈ [0,1) under

Model P , compared to Model N where the selling probability is zero for p > 0.5; see Figure 3/(b)

cf. Figure 2/(b). Correspondingly, the expected revenue, p ·PN(p), as a function of p exhibits the

shape of a full trapezoid, see Figure 3/(c). This implies that sellers with reservation values vs > 0.5

receive a higher expected revenue under Model P (positive amount) compared to under Model N

(zero). Therefore, provision of the product information benefits the sellers with high reservation

values because now there are high-valuation buyers who can afford the listing prices of these sellers.

Finally, given the sellers’ pricing decisions characterized by CDF F̃ P
s (·) and the buyers’ product

valuation vb ∼ U [0,1], let pPmax(db, ds) denote the maximum transaction price between the two

sides when Db = db and Ds = ds. Then, pPmax(db, ds) can be uniquely determined by solving db[1−

Fb(p
N
max)] = ds · F̃N

s (pNmax). The total expected sales volume and sales for the platform under Model

P can be derived as follows:

QP =̇

∫∫
Db,Ds

qP (db, ds)dDbdDs where qP (db, ds)=̇ds · F̃P
s (pPmax);

TP =̇

∫∫
Db,Ds

tP (db, ds)dDbdDs where tP (db, ds)=̇ds ·
∫ pPmax

0

x · f̃P
s (x) dx.

Furthermore, we find that the impact of b and s on the platform’s expected sales and sales

volume under Model P remains qualitatively the same as in Model N , i.e.,
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Proposition 1 is preserved under Model P .

As the primary purpose for this section is to establish the sellers’ pricing decisions in equilibrium,

we will postpone the comparison of the expected sales and sales volume between Model P and

Model N (or between any two models) to §6 where we discuss the impact of different information

structures on the profitability of the platform.

5.2. Market-Information Model

Now, we will introduce the third model, the market-information(-only) model, or Model M , in

which the platform provides the market information but not the product information (i.e., Ib = 0

and Is = 1). It means that the sellers know the realized market size Db = db and Ds = ds when

making pricing decisions. Yet, without the product information, the sellers also understand that

all of the buyers will valuate the product at its mean value, i.e., vb =E(U [0,1]) = 0.5.

Such an information structure substantially simplifies the seller’s game. In particular, denote

pMmax(db, ds) as the maximum transaction price between the sellers and buyers for given db and

ds. Then, based on the matching mechanism described in §3, in equilibrium, all the sellers whose

reservation value vs ≤ pMmax should list their products at the price pMmax in order to maximize

their expected revenue, and the corresponding products will be sold to the buyers with valuation

vb ≥ pMmax. Moreover, the number of sellers who successfully sell a product must be equal to the

number of buyers who successfully buy a product, i.e.,

db · [1−Fb(p
M
max)] = ds ·Fs(p

M
max). (4)

We characterize the sellers’ listing price distribution and selling probability function of the unique

(Pareto-dominant) equilibrium in the following theorem. Note that the pricing decisions of the

sellers with a reservation value vs > pMmax are irrelevant so without loss of generality we assume

that their listing prices are the same as their reservation values.

Theorem 3. Under Model M , given the market information (db, ds), the sellers’ listing price

distribution and the selling probability function in equilibrium are as follows:

F̃M
s (p|db, ds) =

{
0 if 0≤ p < pMmax(db, ds)
p if pMmax(db, ds)≤ p≤ 1

and PM(p|db, ds) =

{
1 if 0≤ p≤ pMmax(db, ds)
0 if pMmax(db, ds)< p≤ 1

where by (4),

pMmax(db, ds)=̇

{
db/ds if db <ds/2;
0.5 if db ≥ ds/2.

(5)

It is clear from (5) that pMmax(db, ds) weakly increases in db and decreases in ds. Therefore, we

can immediately deduce the following result:
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Corollary 2. Equilibrium listing prices (stochastically) increase in db and decrease in ds, i.e.,

Pr(p > x|db, ds) = 1− F̃M
s (x|db, ds) weakly increases in db and decreases in ds for all x∈ [0,1].

Essentially, Corollary 2 for Model M is analogous to Corollary 1 for Model N , both of which state

the notion that the product prices are higher in equilibrium when there is more demand but lower

when there is more supply, due to the market force. However, in Model M , because the market

information is provided to the buyers and sellers, the monotonic result is based on realized market

size db and ds, instead of market parameters b and s as in Model N when no market information

is provided by the platform.

From Theorem 3, we can further derive the sales volume and the sales for the platform for any

given market size db and ds, denoted by qM(db, ds) and tM(db, ds), respectively. Hence, we can

characterize the expected sales volume QM and expected sales TM as follows:

QM =̇

∫∫
Db,Ds

qM(db, ds)dDbdDs where qM(db, ds)=̇

{
db if db <ds/2;

ds/2 if db ≥ ds/2;

TM =̇

∫∫
Db,Ds

tM(db, ds)dDbdDs where tM(db, ds)=̇p
M
max(db, ds) · qM(db, ds) =

{
d2b/ds if db <ds/2;

ds/4 if db ≥ ds/2.

It can be verified that the impact of the sizes of the buyers’ pool (b) and the sellers’ pool (s) on

the platform’s expected sales and sales volume remains unchanged from previous models, i.e.,

Proposition 1 is preserved under Model M .

5.3. Product-and-Market-Information Model

In the last model, we will analyze the scenario where the online marketplace provides both the

product and the market information on its platform (i.e., Ib = 1, Is = 1), which we will refer to

as Model B. The thought process of the equilibrium analysis is similar to that of Model M . In

particular, if we use pBmax(db, ds) to denote the maximum transaction price between the sellers

and buyers given db and ds, then in equilibrium, all sellers with a reservation value vs ≤ pBmax will

list their products at the price pBmax, and the corresponding products will be sold to buyers with

valuation vb ≥ pBmax. Similar to Eq. (4), we have

db · [1−Fb(p
B
max)] = ds ·Fs(p

B
max). (6)

We characterize the sellers’ listing price distribution and selling probability function of the

(Pareto-dominant) equilibrium in the following theorem. Note that the pricing decisions of the

sellers with a reservation value vs > pBmax are again irrelevant so without loss of generality we can

assume that their listing price is the same as reservation value.
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Theorem 4. Under Model B, given the market information (db, ds), the sellers’ listing price

distribution and the selling probability function in equilibrium are as follows:

F̃B
s (p|db, ds) =

{
0 if 0≤ p < pBmax(db, ds)
p if pBmax(db, ds)≤ p≤ 1

and PB(p|db, ds) =

{
1 if 0≤ p≤ pBmax(db, ds)
0 if pBmax(db, ds)< p≤ 1

where by (6), pBmax(db, ds)=̇db/(db + ds).

As pBmax(db, ds) increases in db and decreases in ds, we can easily verify that the sellers’ equilibrium

listing prices given in Theorem 4 (stochastically) increase in db and decrease in ds, i.e.,

Corollary 2 is preserved under Model B.

From Theorem 4, we can also obtain expressions for the platform’s expected sales volume and

expected sales under Model B as follows:

QB =̇

∫∫
Db,Ds

qB(db, ds)dDbdDs where qB(db, ds)=̇ds ·F (pBmax) =
db · ds
db + ds

;

TB =̇

∫∫
Db,Ds

tB(db, ds)dDbdDs where tB(db, ds)=̇p
B
max(db, ds) · qB(db, ds) =

d2b · ds
(db + ds)2

.

It can be further verified that the impact of b and s on the platform’s expected sales and sales

volume remains unchanged from before, i.e.,

Proposition 1 is preserved under Model B.

6. Optimal Information Structure for the Platform

Having characterized the Pareto-dominant equilibrium for each of the four information structures

in §4 and §5 (i.e., Model N, Model P, Model M and Model B), we will now seek an answer in

this section to the fundamental question of the paper: Should the platform provide the buyers and

sellers with the product and/or market information?

To this end, recall that in §3 we have distinguished two types of objective functions for the

platform. This is because, in practice, the platform earns profit by either charging a fixed com-

mission per transaction or a proportional commission as a percentage of the sales. When the

platform practices the fixed-commission scheme (e.g., Swappa), its revenue increases proportionally

to the sales volume (at the rate of the fixed fee). In comparison, when the platform practices the

proportional-commission scheme (e.g., eBay), its revenue increases proportionally to the total sales

(at the rate of the commission rate). We consider the profitability of the platform by focusing on

its sales and sales volume as the two metrics. In particular, we investigate the optimal information

structure for the fixed-commission scheme (i.e., the sales volume maximization) in §6.1, and the

proportional-commission scheme (i.e., the sales maximization) in §6.2.
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6.1. Fixed-Commission Scheme

Under the fixed-commission scheme, the platform seeks to maximize the sales volume in the mar-

ketplace. By comparing the expected sales volume, Q, under all four information structures, we

derive the following result:

Theorem 5. The expected sales volumes satisfy the following relations: (i). QN = QM ; (ii).

QB ≥QP ; (iii). QB ≥QM if and only if b/s > θ1=̇1.0624.

Theorem 5/(i) reveals that in the absence of the product information (i.e., Ib = 0), provision of

the market information has no impact on the sales volume of the platform (i.e., QN =QM). Recall

that without the product information, the buyers cannot accurately assess whether the product

will meet their individual needs and, therefore, evaluate the product with an expected value. As

a result, based on the realized market size of the buyers and sellers (db and ds), either all of the

db buyers are able to acquire the product or all of the ds ·Fs(0.5) sellers whose reservation value

is no higher than the buyers’ mean valuation 0.5 are able to sell their products, i.e., qN = qM =

min{db, ds ·Fs(0.5)}. In other words, the lesser of the two quantities, which are both independent of

the market information revelation, determines the sales volume of the platform. Hence, providing

the market information has no impact on the platform’s expected sales volume in the absence of

the product information. Yet, it is worth mentioning here that provision of the market information

by the platform does affect the sellers’ optimal pricing decisions and thus the expected sales of the

platform, as we should later see in §6.2.

By contrast, if the platform is already providing the product information to the buyers and

sellers (i.e., Ib = 1), then Theorem 5/(ii) states that it is beneficial for the platform to also provide

the market information (i.e., QB ≥QP ). Note that in the presence of the product information, the

buyers are able to infer their exact valuations of the product, which creates heterogeneous product

valuations among them and incentivizes the sellers to enlarge their price differentiation. However,

the increased spread of the listing price distribution could create mismatch between the supply and

the demand, and this is where the market information can add its value. When given the market

information, the sellers could adaptively adjust their prices in response to the realized market size,

and demand becomes better matched with supply. Therefore, in this case, provision of the market

information leads to a higher sales volume for the platform, as it facilitates more transactions to

occur given that the sellers are able to make target pricing decisions in response to the realized

market size.

Yet, different from the market information decision, whether the platform should provide the

product information is a less straightforward decision. In particular, we can see from Theorem

5/(iii) that the product information decision is contingent on the ratio of b/s. As b and s correspond
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to the sizes of the buyers’ pool and the sellers’ pool, respectively, and the realized market size of

the buyers and the sellers are uniformly distributed, we will address the ratio of b/s simply as the

demand-to-supply ratio. Borrowing a term from the real estate industry, we will categorize a market

with the demand-to-supply ratio greater than one (resp. less than one) as a seller’s market (resp. a

buyer’s market) in the remaining paper. Theorem 5/(iii) reveals that when the demand-to-supply

ratio exceeds θ1 = 1.0624 (i.e., approximately in a seller’s market), it is optimal for the platform to

supply the product information; otherwise, it should not supply the product information.

To intuit the result of Theorem 5/(iii), let us first consider a seller’s market (i.e., the market is

under a high demand-to-supply ratio). In a seller’s market, the buyers outnumber the sellers and

if there were no product information, all the buyers can only afford low or median product price

listings (i.e., the buyers are willing to pay no more than the mean valuation 0.5). Hence, the sales

volume is constrained by the sellers who have high reservation values (and their listing prices are

even higher). Under this scenario, it is optimal for the platform to reveal the product information,

as doing so increases the spread of product valuations for buyers, with those buyers that have

high product valuations willing to pay high prices, leading to more sales. On the other hand, in a

buyer’s market (i.e., the market is under a low demand-to-supply ratio), there are more sellers than

buyers. Buyers with median or high product valuations can always acquire the product, but buyers

with low product valuations may not be able to because they are the last ones to be matched with

the sellers in the marketplace and these remaining sellers may not have low listing prices for the

product. In this case, the sales volume of the platform is restricted by the number of buyers who

have low product valuations. Therefore, by not sharing the product information, the platform can

reduce the number of buyers with low product valuations and improve overall sales volume.

Based on Theorem 5, we can summarize the platform’s optimal information strategy under the

fixed-commission scheme (i.e., maximization of expected sales volume) in the following proposition,

which is also illustrated by Figure 4/(a).

Proposition 2. Under the fixed-commission scheme, it is optimal for the platform to provide

both the product and market information when b/s > θ1. Otherwise, the platform is in its best

interest not to provide the product information. Without the provision of product information,

market information does not add value to the profitability of the platform.

6.2. Proportional-Commission Scheme

Under the proportional-commission scheme, the platform seeks to maximize its expected total sales

T instead. By comparing the expected total sales under different information structures, we obtain

the following result:
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Figure 4 Optimal information structure for the platform under different commission schemes.
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Theorem 6. The expected sales satisfy the following relations: (i). TM ≥ TN ; (ii). TB ≥ TM if

and only if b/s > θ2=̇0.9190; (iii). TB ≥ TN if and only if b/s < θ3=̇0.3230 or b/s > θ4=̇0.7304.

Akin to Theorem 5 for sales volume maximization, Theorem 6 suggests that the optimal infor-

mation structure for the platform, when the goal is to maximize the sales, is contingent exclusively

on the demand-to-supply ratio b/s. In what follows, we will elaborate on each part of Theorem 6.

First, Theorem 6/(i) reveals that in the absence of the product information (i.e., Ib = 0), provision

of the market information always improves the total sales. This draws a direct contrast to its

counterpart, Theorem 5/(i), which indicates that provision of the market information has no impact

on the sales volume when no product information is provided by the platform. The intuition for

Theorem 6/(i) is that even if the same number of transactions occur between the sellers and buyers

with or without market information, when there is market information, the sellers can make target

pricing decisions in response to the realized market size, boosting the transaction prices.

Second, if the platform releases the market information (i.e., Is=1), Theorem 6/(ii) suggests

that the platform can improve its expected total sales by releasing the product information if and

only if b/s > θ3 = 0.9190, i.e., approximately in a seller’s market. The intuition here is similar to

that of Theorem 5/(iii). Specifically, in a seller’s market (i.e., the market is under high demand-

to-supply ratio) without the product information, the buyers will only pay low or median prices

for the product, and the total sales volume will mainly be driven by how many products from the

high-reservation-value/high-price sellers can be acquired. By providing the product information,

the platform facilitates the buyers to develop heterogeneous product valuations, and the high-

reservation-value sellers, who could not be matched with buyers before, can now find buyers,

boosting the total sales for the platform. On the other hand, in a buyer’s market (i.e., the market

is under a low demand-to-supply ratio) without the product information, the buyers can always
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successfully acquire the product without paying a high price. However, if the platform provides the

product information, buyers with low product valuations may return empty-handed because they

will be the last ones to acquire the product according to the matching mechanism. In this case,

the platform can benefit from not providing the product information to avoid such lost sales.

Finally, Theorem 6/(iii) states that providing both the product and the market information

leads to higher total sales for the platform compared to the strategy of withholding both types of

information, if and only if the demand-to-supply ratio is either sufficiently small or sufficiently large

but not when it is at an intermediate level (i.e., if and only if b/s < θ3 or b/s > θ4). To intuit the

result, let us first consider the effect of product information and the effect of market information

on sales in isolation. On one hand, the provision of product information reduces (resp. increases)

sales when the demand-to-supply ratio is under (resp. above) some threshold, see the explanation

for Theorem 6/(ii). On the other hand, the provision of market information always increases sales,

see the explanation for Theorem 6/(i). When the demand-to-supply ratio is sufficiently small

(i.e., b/s < θ3), the negative effect on sales by providing product information is outweighed by

the positive effect on sales by providing market information, making announcing both types of

information a better strategy than withholding them. However, when the demand-to-supply ratio

is at an intermediate level (i.e., b/s ∈ [θ3, θ4]), the negative effect on sales by providing product

information can no longer be offset by the positive effect on sales by providing market information,

making announcing both types of information a worse strategy than announcing them. Last, when

the demand-to-supply ratio becomes sufficiently high (i.e., b/s > θ4), the provision of either product

information or market information has a positive effect on sales. Combining both positive effects,

the platform is certainly better off with providing both types of information compared to not

providing any information.

It is necessary to note now that Theorem 6 does not present any comparison results on the

expected total sales under Model P, i.e., T P . This is because TP cannot be explicitly character-

ized and analytically compared to the other models. Nevertheless, through extensive numerical

experiments that we have conducted, we find that Model B continues to dominate Model P for the

expected total sales, i.e., TB ≥ TP (we showed QB ≥QP analytically in Theorem 5/(ii)). Accord-

ingly, we can infer the platform’s optimal information strategy under the proportional-commission

scheme, when its goal is to maximize expected total sales. The result is presented in the following

proposition and illustrated in Figure 4/(b).

Proposition 3. Under the proportional-commission scheme, it is optimal for the platform to

provide both the product and market information when b/s > θ2. Otherwise, it is optimal for the

platform to provide only the market information.
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By comparing Proposition 2 and Proposition 3 (Figure 4/(a) and (b) accordingly), we can discern

the similarities and the differences concerning the optimal information structure/strategy for the

platform when the platform practices a fixed or a proportional-commission scheme. Under either

scheme, it is only optimal for the platform to broadcast both the product and market information

in a seller’s market which facilitates a better matching between the sellers’ reservation values and

the buyers’ actual valuations for the product. By contrast, when facing a buyer’s market, the

platform should always conceal the product information so that the buyers’ valuations for the

product are less dispersed. In addition, in a buyer’s market, even though providing only the market

information is an optimal strategy for the platform regardless of the underlying commission scheme,

the market information will add actual value only for the fixed-commission scheme but not the

proportional-commission scheme.

7. Value of Information

In this section, we will quantitatively assess the benefits of the provision of information for the

platform based on the optimal information structure identified in §6. We will start with the scenario

where the platform practices the fixed-commission scheme, i.e., the objective of the platform is to

maximize the expected sales volume.

In Figure 5/(a), we plot the expected sales volume under the four different information structures

(i.e., Model N, Model P, Model M, and Model B) for various demand-to-supply ratios (i.e., b/s). As

the optimal information structure depends exclusively on the ratio of b/s, without loss of generality,

we set s= 1 and vary the value of b to make the plot. We observe that in all four models the sales

volume increases in b, which is consistent with the theoretical prediction of Proposition 1/(i).

To gauge the potential benefits of the provision of information, we benchmark the sales volume

under the optimal information structure to that of the no-information structure. We define the value

Figure 5 Sales volume and the corresponding Value of Information under the fixed-commission scheme

(a) Sales Volume (b) Value of Information (for Sales Volume)
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of information for the sales volume, denoted by V OIQ, as the percentage increase in the expected

sales volume between the two, i.e., V OIQ := max{QN ,QP ,QM ,QB}/QN−1. For example, when the

optimal information structure is the no-information case itself, we have max{QN ,QP ,QM ,QB}=

QN and V OIQ = 0%, i.e., there is no value to the platform in obtaining and providing the product

or the market information.

We plot V OIQ for various demand-to-supply ratios b/s in Figure 5/(b). Immediately, we observe

that more information does not always benefit the platform. In particular, consistent with Propo-

sition 2, we see that when the demand-to-supply ratio is less than the threshold θ1 = 1.0624, the

platform receives no value (or even negative value) in providing information. Yet, as the demand-

to-supply ratio increases with more buyers, the market moves into a seller’s market, in which case

the platform becomes incentivized to provide both the product and market information in order

to maximize the sales volume (i.e., in this case Model B is the optimal information structure for

the platform).

We further observe that the value of information increases in the demand-to-supply ratio from 0%

when b/s= 1 : 1 to approximately 50% when b/s= 5 : 1, see Figure 5/(b). This observation suggests

that when the platform grows mature and starts to attract more and more buyers, investing in a

review system (to provide detailed product information to buyers) as well as website visitor tracking

technology (to provide real-time information on market size to sellers) can be a wise strategy for

the platform which will generate increasing returns as the value of information grows.

Next, we turn to a platform that practices the proportional-commission scheme. Because the goal

of the platform becomes maximizing the expected total sales, we define the value of information

for the sales, denoted by V OIT , as the percentage increase in sales under the optimal information

structure over the no-information structure, i.e., V OIT := max{TN , T P , TM , TB}/TN−1. In Figure

6/(a) and (b), we plot the expected total sales under the four information structures studied in the

paper and the value of information for sales, respectively, as a function of the demand-to-supply

ratio b/s. We continue to set s= 1 and vary the value of b for these plots.

There are some interesting observations that arise from Figure 6. First, the expected sales in

all models increase in b, which is consistent with the theoretical prediction of Proposition 1/(ii).

It is worth noting here that if we fixed b and let s vary, then the sales will be unimodal in s.

Yet, the value of information will remain unchanged as long as the value of b/s stays the same.

Second, the value of information for the sales, intriguingly, exhibits a non-monotonic pattern with

respect to the demand-to-supply ratio b/s. Specifically, additional information can help improve

sales when the platform is faced with either a seller’s market (i.e., b/s ≤ 0.9705) or a buyer’s

market (i.e., b/s > 0.9705), which is consistent with Proposition 3. Furthermore, we observe that

the value of information increases in the intensity of either market. Hence, we can conclude that
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Figure 6 Total sales and the corresponding Value of Information under the proportional-commission scheme

(a) Sales (b) Value of Information (for Sales)

a revenue-maximizing platform can substantially benefit from having and releasing information

when the market is unbalanced, meaning that either sellers greatly outnumber buyers or vice versa.

In particular, as we can see in Figure 6/(b), as the ratio of b/s approaches 5 : 1, the value of

information reaches approximately 140%. The takeaway here is that for a buyer-popular revenue-

maximizing online marketplace, it is particularly advantageous if the platform can obtain and use

both product and market information correctly.

Finally, by comparing Figure 6/(b) to Figure 5/(b), we observe that information is more valuable

to the platform when the goal of the platform is to maximize sales rather than sales volume, and

when it faces a seller’s market rather than a buyer’s market.

8. Concluding Remarks

We have studied the role and the value of information in an online marketplace in this paper. We

find that information could be a double-edged sword for the platform. On one hand, the platform

benefits from the revelation of all (product and market) information in a seller’s market. On the

other hand, it is less helpful or even harmful for the platform to have all information revealed in a

buyer’s market.

In particular, product information should be only provided in a seller’s market and not in a

buyer’s market, regardless of whether the goal of the platform is to maximize sales or sales volume.

This is because in a seller’s market, there are more buyers than sellers. If all sellers can sell their

products, the platform can maximize sales or sales volume, especially when those sellers with high

reservation value can sell their products. Provision of product information is a great strategy in this

case as it allows the buyers to develop heterogeneous product valuations with those buyers that

have higher product valuations willing to pay for higher prices. In contrast, in a buyer’s market,

sellers outnumber buyers, and total sales or sales volume of the platform can be maximized if

all buyers can successfully purchase the product. By not providing the product information, the

 Electronic copy available at: https://ssrn.com/abstract=3259465 



26

platform benefits from customers’ product valuations being less dispersed, meaning that there are

fewer customers with low willingness-to-pay for the product.

We also find that while market information typically helps the platform improve sales, if the

goal is to increase sales volume, it may not add real value to the platform. This can happen, for

example, when product information is not provided to buyers and sellers. In this case, the total

sales volume depends exclusively on the number of buyers and sellers who join the platform but

does not depend on the revelation of the market information.

Our other contribution in this research is the underlying technical analysis which identifies

the (Pareto-dominant) equilibrium of the sellers’ pricing decisions under various informational

structures. As noted by Chen et al. (2016) on the seller competition for an online marketplace (see

p. 591 of the paper), “it is difficult to make a comprehensive and rigorous analysis for the general

seller competition case,” and we have sought to carry out the analysis under some reasonable

assumptions. We find that after taking into account sellers’ strategic pricing decisions, the sales of

the online marketplace increase in the size of the buyers’ pool but are actually unimodal in the size

of the sellers’ pool. This is because the online marketplace is essentially a two-sided market where

the cross-side network effect is positive (buyers prefer more sellers and vice versa) but same-side

network effect is negative (each buyer prefers less other buyers to drive down equilibrium prices

and each seller prefers less other sellers to drive up equilibrium prices). Hence, while a larger pool

of buyers always results in more sales for the platform (more transactions plus higher transaction

prices), a larger pool of sellers does not (more transactions yet lower prices).

As the objective of our model framework is to capture the essential elements relevant to the infor-

mation structure of an online marketplace while at the same time, keeping the analysis tractable,

the model is certainly not without limitations.

First, we assumed that each seller who participates in the platform only has one unit of the

product in stock. In reality, when each seller represents a small business, they can carry multiple

products in the inventory. However, we can extend our model without sacrificing any results to

include the case where each seller has n units of the product for sale.

Second, products from different sellers in our model are perfectly substitutable as we focus on

customers’ buying and selling decisions of a particular product. In comparison, Chen et al. (2016)

consider products that are not at all substitutable. Future work is needed to shed more light on

the intermediate case where products from different sellers are substitutable to a certain extent.

Third, we modeled information revelation as discrete zero-one decisions in our framework for

the sake of simplicity. Although market information is quite naturally an all-or-nothing decision,

product information may have different levels that can be shared with the customers. Even so, the
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all-or-nothing product information revelation decision is well justified by the literature, see Lewis

and Sappington (1991, 1994) and Johnson and Myatt (2006).

Fourth, we have largely derived our analytical results based on uniform distributions, under

which the analyses were already complicated and in some cases intractable (e.g., the analytical

characterization of TP was not feasible). Yet, we have performed extensive numerical experiments

based on the more general Beta distribution, and the key results and insights of the paper all

continue to hold qualitatively.

Fifth, we studied the benefits of information which is only half of the story—the costs of infor-

mation need to be assessed to determine the optimal strategy for the platform. In fact, some of

the online marketplaces do not currently provide product and/or market information to customers

due to the concerns about the cost of implementing the relevant platform technologies. Our work

suggests that this may not be an adverse outcome under certain situations (e.g., sales volume

maximization under a buyer’s market).

Finally, we did not consider the platform’s optimal commission problem, which is an interesting

research question to pursue that is beyond the scope of the current paper. We refer interested

readers to Hu and Zhou (2017) which studies the optimal commission structure of an on-demand

matching platform. Similarly, we considered a monopolist platform in this paper as is typically done

in the literature (see, e.g., Cachon et al. (2017), Taylor (2018) and Benjaafar et al. (2018)). Under

oligopoly settings, how competition influences the online marketplaces’ information decisions can

be an interesting extension to this research, although analytical tractability can be in doubt.
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Proof of Theorem 1 Recall that the goal of each seller is to determine the listing price p, in order to

maximize her individual expected revenue given in Eq. (1). Let PN (x) be an equilibrium selling probability

under the sellers’ game and consider the optimal selling price decision for the seller with a zero reservation

value. Denote A as the maximizer set for g (x) =̇x ·PN (x) (i.e., A=̇ arg maxx∈[0,1] {g (x)}). We will first show

that A is a single non-empty closed interval, denoted by
[
p, p̃
]
. The non-empty property of A directly comes

from the fact that PN (x) is a non-increasing and left-contiunous function.

Next, we will show that A includes only one interval by reductio ad absurdum. Denote g∗ as the maximum

value for g (x). If there are two adjacent intervals A1 and A2 in A (i.e., A1=̇ [a1, b1]⊂ A, A2=̇ [a2, b2]⊂ A,

and A1 ∩ A2 = ∅), then we denote the inteval between A1 and A2 as B=̇ (b1, a2). By construction, no

seller will charge a price in interval B. Consider the seller with a zero reservation value. Her surplus at

an arbitrary point b ∈ B can be expressed as g (b) = b · Pr
{
Db (1− b)>DsF̃

N
s (b1)

}
where F̃N

s (b1) ≤ b1.

Now, consider two scenarios: (i) If F̃N
s (b1)> (1− b), then g (b) = b ·

∫ (1−b)/F̃Ns (b1)

0

∫ 1

Ds·F̃Ns (b1)/(1−b)
dDbdDs =

1
2F̃Ns (b1)

(
−
(
b− 1

2

)2
+ 1

4

)
, which is a strictly concave function; note that g (b1) = g (a2) = g∗ > g (b), which

contradicts the fact that g (b) is a strictly concave function; (ii) If F̃N
s (b1) ≤ (1− b), then g (b) = b ·∫ 1

0

∫ 1

Ds·F̃Ns (b1)/(1−b)
dDbdDs = b

(
1− 1

2
c

(1−b)

)
, whose first-order derivative is 1

2(1−b)2

(
2 (b+ 1)

2− F̃N
s (b1)

)
> 0,

which contradicts the fact that g (b1) = g (a2) = g∗ > g (b). Therefore, there is only one interval in A.

To show that A is a closed interval, we need to rule out two cases: (i) If there is a jump at p. As g (x) is

maximized at A, g (x) must jump upwards at p, which is not possible given that PN (x) is a non-increasing

function and x is a continuous function. (ii) If there is a downward jump at p̃ and limx→p̃− g (x) > g (p̃),

which is also not possible given that PN (x) is a left–continuous function and x is a continuous function.

Therefore, we can define

p̃= max{arg max
p

{
p ·PN (p)

}
}, (EC.1)

and correspondingly present the CDF of the sellers’ equilibrium listing price distribution as

F̃N
s (p) =

{
FN
s (p) if 0≤ p≤ p̃;

Fs (p) if p̃≤ p≤ 1.
(EC.2)

If a seller’s listing price is p < p̃, and her corresponding expected revenue satisfies p ·PN(p)< p̃ ·PN(p̃), she

always have an incentive to increase her price to p̃. In other words, the equilibrium price p of any seller whose

reservation value vs < p̃ must satisfy p ·PN(p) = p̃ ·PN(p̃) in equilibrium.

Define p= p̃ ·PN(p̃), we can deduce that PN(p) = 1. When a seller’s listing price is p < p, the corresponding

revenue p · PN(p) ≤ p < p = p̃ · PN(p̃), so the seller always has an incentive to increase her listing price to

p. That is, no seller would choose a price p < p in equilibrium. Thus, at any price p < p, the corresponding

selling probability of the product is PN(p) = 1. Therefore, we have

p ·PN (p) =

{
p · 1 if 0≤ p≤ p;
p̃ ·PN(p̃) if p≤ p≤ p̃.

(EC.3)

 Electronic copy available at: https://ssrn.com/abstract=3259465 



ec2

Depending on the realized values of Db and Ds, a seller will be able to sell the product at price p if and

only if Db ≥Ds · F̃N
s (p)⇔Ds ≤ Db

F̃Ns (p)
, when p≤ 0.5. It follows from Eq. (2) that, when p≤ 0.5, we have

PN(p) =EDs,Db

[
1

{
Db ≥Ds · F̃N

s (p)
}]

=

∫ s

0

∫ b

Ds·F̃Ns (p)

1

bs
dDbdDs =

∫ b

0

∫ Db
F̃Ns (p)

0

1

bs
dDsdDb (EC.4)

On the other hand, when 0.5< p≤ 1, it is clear from Eq. (2) that PN(p) = 0. From Eq. (EC.1), we know

p̃≤ 0.5.

Next we will consider two big cases, namely, b≤ s and b≥ s. Specifically, when b≤ s, let us use θ to denote

the solution of p to b = s · F̃N
s (p), and we will discuss two subcases of 0 ≤ θ ≤ 0.5 and 0.5 ≤ θ ≤ 1. When

0≤ θ≤ 0.5, we will need to consider two more scenarios p̃≤ θ and p̃≥ θ. When 0.5≤ θ≤ 1, we will only need

to consider the case p̃≤ θ since p̃≤ 0.5. In other words, we will discuss the following four cases altogether, to

find any possible solution of p̃ to Eq. (EC.1): Case (1) b≤ s and p̃≤ θ≤ 0.5; Case (2) b≤ s and θ≤ p̃≤ 0.5;

Case (3) b≤ s and p̃≤ 0.5≤ θ; and Case (4) b≥ s.

Case (1) When b ≤ s and p̃ ≤ θ ≤ 0.5. Case (1a). When 0 ≤ p ≤ p̃(≤ θ), we have s · F̃N
s (p) ≤ b. Also, we

have F̃N
s (p) = FN

s (p) from Eq. (EC.2). It follows from Eqn. (EC.3) that PN(p) =
∫ s
0

∫ b
DsFNs (p)

1
bs
dDbdDs =

1− s
2b
FN
s (p). Case (1b). When p̃≤ p≤ θ, we have s · F̃N

s (p)≤ b and F̃N
s (p) = Fs(p). It follows from Eqn. (EC.3)

that PN(p) =
∫ s
0

∫ b
DsFs(p)

1
bs
dDbdDs = 1− s

2b
p. Case (1c). When (p̃≤)θ≤ p≤ 0.5, we also have F̃N

s (p) = Fs(p)

from Eqn. (EC.2). However, because s · F̃N
s (p)≥ b, it is easier to calculate PN(p) using Eqn. (EC.4). It follows

that PN(p) =
∫ b
0

∫ Db
Fs(p)

0
1
bs
dDsdDb = b

2s
1
p
. Case (1d). When 0.5< p≤ 1, we have PN(p) = 0. Combining Cases

(1a)-(1d), we have

p ·PN(p) =


p
[
1− s

2b
FN
s (p)

]
if 0≤ p≤ p̃;

p
[
1− s

2b
p
]

if p̃≤ p≤ θ;
p
[
b
2s

1
p

]
if θ≤ p≤ 0.5;

0 if 0.5< p≤ 1.

(EC.5)

By comparing Eqn. (EC.5) and Eqn. (EC.3), p ·PN(p) must have the following structure

p ·PN(p) =



p
[
1− s

2b
FN
s (p)

]
= p if 0≤ p≤ p;

p
[
1− s

2b
FN
s (p)

]
= p̃ ·PN(p̃) if p≤ p≤ p̃;

p
[
1− s

2b
p
]

if p̃≤ p≤ θ;
p
[
b
2s

1
p

]
if θ≤ p≤ 0.5;

0 if 0.5< p≤ 1.

(EC.6)

Eqn. (EC.6), together with Eqn. (EC.2) and the fact that no customer charges more than p̃ unless the

reservation price constraint is binding, we have

F̃N
s (p) =


FN
s (p) = 0 if 0≤ p≤ p;

FN
s (p) = 2b

s
(1− p̃·PN (p̃)

p
) if p≤ p≤ p̃;

Fs(p) = p if p̃≤ p≤ 1.

(EC.7)

From Eqn. (EC.6), we know that, when p̃≤ p≤ θ, p ·PN(p) = p
[
1− s

2b
p
]

= p− s
2b
p2 is concave in p by first

increasing up to the point p∗ = b
s

and then decreasing (the maximum value obtained at p∗ is p∗ ·P (p∗) = b
2s

);

when θ≤ p≤ 0.5, p ·PN(p) = p
[
b
2s

1
p

]
= b

2s
. Furthermore, we have b= s · F̃N

s (θ) by definition, and F̃N
s (θ) = θ

from Eqn. (EC.7), we can derive θ = b
s

and easily verify that p · PN(p) is continuous at θ = b
s
. To ensure

 Electronic copy available at: https://ssrn.com/abstract=3259465 



ec3

that the maximizers of p · PN(p) are indeed [p, p̃], we need to have p∗ ≤ p̃. Therefore, we can deduce that

the candidate p̃ satisfies p∗ ≤ p̃≤ θ, or equivalently, p̃= b
s
. Moreover, from θ≤ 0.5, we have the precondition

b≤ s
2
.

Case (2) When b ≤ s, and θ ≤ p̃ ≤ 0.5. Case (2a). When 0 ≤ p ≤ θ(≤ p̃), we have F̃N
s (p) = FN

s (p) and

s · F̃N
s (p)≤ b. Thus, PN(p) has the same expression as Case (1a). Case (2b). When θ≤ p≤ p̃(≤ 0.5), we have

s · F̃N
s (p)≥ b and F̃N

s (p) = FN
s (p), it follows that PN(p) =

∫ b
0

∫ Db
FNs (p)

0
1
bs
dDsdDb = b

2s
1

FNs (p)
. Case (2c). When

(θ≤)p̃≤ p≤ 0.5, we have s · F̃N
s (p)≥ b and F̃N

s (p) = Fs(p). It follows that PN(p) has the same expression as

in Case (1c). Case (2d). When 0.5< p≤ 1, we have PN(p) = 0. Combining Cases (2a)-(2d), we have

p ·PN(p) =


p
[
1− s

2b
FN
s (p)

]
if 0≤ p≤ θ;

p
[
b
2s

1
FNs (p)

]
if θ≤ p≤ p̃;

p
[
b
2s

1
p

]
if p̃≤ p≤ 0.5;

0 if 0.5< p≤ 1.

(EC.8)

By comparing Eqn. (EC.8) and Eqn. (EC.3), we have p · PN(p) for two subcases when p≤ θ and when

p≥ θ.
On one hand, when p≤ θ(≤ p̃≤ 0.5), we have

p ·PN(p) =



p
[
1− s

2b
FN
s (p)

]
= p if 0≤ p≤ p;

p
[
1− s

2b
FN
s (p)

]
= p̃ ·PN(p̃) if p≤ p≤ θ;

p
[
b
2s

1
FNs (p)

]
= p̃ ·PN(p̃) if θ≤ p≤ p̃;

p
[
b
2s

1
p

]
if p̃≤ p≤ 0.5;

0 if 0.5< p≤ 1.

(EC.9)

Eqn. (EC.9), together with Eqn. (EC.2) and the fact that no customer charges more than p̃ unless the

reservation price constraint is binding, we have

F̃N
s (p) =


0 if 0≤ p≤ p;
2b
s

(1− p̃·PN (p̃)

p
) if p≤ p≤ θ;

b
2s

p

p̃·PN (p̃)
if θ≤ p≤ p̃;

p if p̃≤ p≤ 1.

(EC.10)

Because F̃N
s (p) needs to be continuous, we know that F̃N

s (θ−) = F̃N
s (θ+)⇔ 2b

s
(1− p̃·PN (p̃)

θ
) = b

2s
θ

p̃·PN (p̃)
⇔

θ= 2p̃ ·PN(p̃). That is, F̃N
s (θ) = F̃N

s (θ−) = F̃N
s (θ+) = b

s
and it is easy to verify that b= s · F̃N

s (θ).

On the other hand, when p≥ θ, we have from Eqn. (EC.8) and Eqn. (EC.3) that

p ·PN(p) =



p
[
1− s

2b
FN
s (p)

]
= p if 0≤ p≤ θ;

p
[
b
2s

1
FNs (p)

]
= p if θ≤ p≤ p;

p
[
b
2s

1
FNs (p)

]
= p̃ ·PN(p̃) if p≤ p≤ p̃;

p
[
b
2s

1
p

]
if p̃≤ p≤ 0.5;

0 if 0.5< p≤ 1.

(EC.11)

And it follows that

F̃N
s (p) =


0 if 0≤ p≤ θ;
b
2s

if θ≤ p≤ p;
b
2s

p

p̃·PN (p̃)
if p≤ p≤ p̃;

p if p̃≤ p≤ 1.

(EC.12)
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However, in this subcase, F̃N
s (p) is not continuous at p= θ, so there cannot be an equilibrium when p > θ.

So for Case 2, the candidate p̃ satisfies (p≤)θ≤ p̃≤ 0.5.

To summarize all the analysis so far, from Case (1), we know that if p̃= b
s
, p ·PN(p) is given by Eqn. (EC.6),

and F̃N
s (p) is given by Eqn. (EC.7). Therefore, there is a unique equilibrium in Case (1). From Case (2),

we know that if p̃≥ θ(= b
s
), p · PN(p) is given by Eqn. (EC.9), and F̃N

s (p) is given by Eqn. (EC.10), also,

p̃ · PN(p̃) decreases in p̃. As every p̃ in the set
[
b
s
,1
]

is a equilibrium in the seller’s game, we will identify

the Pareto-dominant equilibrium in which sellers’ expected revenue is maximized. In particular, combining

Case (1) and Case (2), we know that in the case of θ≤ 0.5 (i.e., b≤ s/2), when p̃= b
s
, p̃ ·PN(p̃) achieves its

maximum. Together with Eqn. (EC.1), we know that when p̃= b
s
, all the sellers’ expected revenue p ·PN(p)

also achieve the maximum. That is, p̃= b
s

is the Pareto-dominant solution, with corresponding p̃ ·PN(p̃) = b
2s

,

in the case of b≤ s/2. Also, p ·PN(p) is given by Eqn. (EC.6), and F̃N
s (p) is given by Eqn. (EC.7).

Case (3). When b≤ s and p̃≤ 0.5≤ θ. Case (3a). When 0≤ p≤ p̃(≤ 0.5≤ θ), we have s · F̃N
s (p)≤ b. Also, we

have F̃N
s (p) = FN

s (p) from Eqn. (EC.2). It follows from Eqn. (EC.3) that PN(p) =
∫ s
0

∫ b
DsFNs (p)

1
bs
dDbdDs =

1− s
2b
FN
s (p). Case (3b). When p̃≤ p≤ 0.5(≤ θ), we have s · F̃N

s (p)≤ b and F̃N
s (p) = Fs(p). It follows from

Eqn. (EC.3) that PN(p) =
∫ s
0

∫ b
DsFNs (p)

1
bs
dDbdDs = 1− s

2b
p. Case (3c). When 0.5< p≤ 1, we have PN(p) = 0.

Combining Cases (3a)-(3c), we have

p ·PN(p) =


p
[
1− s

2b
FN
s (p)

]
if 0≤ p≤ p̃;

p
[
1− s

2b
p
]

if p̃≤ p≤ 0.5;

0 if 0.5< p≤ 1.

(EC.13)

By comparing Eqn. (EC.13) and Eqn. (EC.3), p ·PN(p) must have the following structure

p ·PN(p) =


p
[
1− s

2b
FN
s (p)

]
= p if 0≤ p≤ p;

p
[
1− s

2b
FN
s (p)

]
= p̃ ·PN(p̃) if p≤ p≤ p̃;

p
[
1− s

2b
p
]

if p̃≤ p≤ 0.5;

0 if 0.5< p≤ 1.

(EC.14)

Eqn. (EC.14), together with Eqn. (EC.2) and the fact that no customer charges more than p̃ unless the

reservation price constraint is binding, we have

F̃N
s (p) =


FN
s (p) = 0 if 0≤ p≤ p;

FN
s (p) = 2b

s
(1− p̃·PN (p̃)

p
) if p≤ p≤ p̃;

Fs(p) = p if p̃≤ p≤ 1.

(EC.15)

From Eqn. (EC.14), we know that, when p̃≤ p≤ 0.5, p ·PN(p) = p
[
1− s

2b
p
]

= p− s
2b
p2 is concave in p by

first increasing up to the point p∗ = b
s

(if b
s
≤ 0.5) and then decreasing (the maximum value obtained at p∗

is p∗ · P (p∗) = b
2s

), or p · PN(p) = p
[
1− s

2b
p
]

= p− s
2b
p2 is concave increasing in p to the point p∗ = 0.5 (if

b
s
≥ 0.5); when 0.5< p≤ 1, p · PN(p) = 0. Furthermore, we have b= s · F̃N

s (θ) by definition, and F̃N
s (θ) = θ

from Eqn. (EC.15) (i.e., p̃≤ 0.5≤ θ), we can derive θ= b
s

and easily verify that p ·PN(p) = 0 at θ= b
s
(≥ 0.5).

Therefore, we have p∗ = 0.5. To ensure that the maximizers of p · PN(p) are indeed [p, p̃], we need to have

p∗ ≤ p̃. Therefore, we can deduce that the candidate p̃ satisfies p∗ ≤ p̃≤ 0.5, or equivalently, p̃= 0.5, and the

corresponding p̃ ·PN(p̃) = 1
2
− s

8b
. Moreover, from 0.5≤ θ≤ 1, we have the precondition s

2
≤ b≤ s.

Case (4) When b ≥ s, we have b ≥ s · F̃N
s (p) for any p. Case (4a): when 0 ≤ p ≤ p̃(≤ 0.5), it is easier

to calculate PN(p) using Eqn. (EC.3). Also, F̃N
s (p) = FN

s (p) from Eqn. (EC.2). It follows that PN(p) =
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∫ s
0

∫ b
DsFNs (p)

1
bs
dDbdDs = 1− s

2b
FN
s (p). Case (4b): When p̃≤ p≤ 0.5, we have s · F̃N

s (p)≤ b and F̃N
s (p) = Fs(p).

It follows from Eqn. (EC.3) that PN(p) =
∫ s
0

∫ b
DsFNs (p)

1
bs
dDbdDs = 1− s

2b
p. Case (4c). When 0.5< p≤ 1, we

have PN(p) = 0.

Combining Cases (4a)-(4c), we have

p ·PN(p) =


p
[
1− s

2b
FN
s (p)

]
if 0≤ p≤ p̃;

p
[
1− s

2b
p
]

if p̃≤ p≤ 0.5;

0 if 0.5< p≤ 1.

(EC.16)

By comparing Eqn. (EC.16) and Eqn. (EC.3), p ·PN(p) must have the following structure

p ·PN(p) =


p
[
1− s

2b
FN
s (p)

]
= p if 0≤ p≤ p;

p
[
1− s

2b
FN
s (p)

]
= p̃ ·PN(p̃) if p≤ p≤ p̃;

p
[
1− s

2b
p
]

if p̃≤ p≤ 0.5;

0 if 0.5< p≤ 1.

(EC.17)

Eqn. (EC.17), together with Eqn. (EC.2) and the fact that no customer charges more than p̃ unless the

reservation price constraint is binding, we have

F̃N
s (p) =


FN
s (p) = 0 if 0≤ p≤ p;

FN
s (p) = 2b

s
(1− p̃·PN (p̃)

p
) if p≤ p≤ p̃(≤ 0.5);

Fs(p) = p if p̃≤ p≤ 1.

(EC.18)

It is also easy to verify that when p̃≤ p≤ 0.5, p ·PN(p) = p
[
1− s

2b
p
]

= p− s
2b
p2 is concave increasing in p

(since the extreme point b
s
≥ 1), then the maximize p∗ = 0.5. To ensure that the maximizers of p ·PN(p) are

indeed [p, p̃], we need to have p∗ ≤ p̃. Therefore, we can deduce that the candidate p̃ satisfies p∗ ≤ p̃≤ 0.5, or

equivalently, p̃= 0.5, and the corresponding p̃ ·PN(p̃) = 1
2
− s

8b
.

Combining Case (3) and Case (4), we know that in the case of b≥ s/2, when p̃= 0.5, p̃ ·PN(p̃) achieves

its maximum. Together with Eqn. (EC.1), we know that when p̃ = 0.5, all the sellers’ expected revenue

p · PN(p) also achieve the maximum. That is, p̃= 0.5 is the Pareto-dominant solution, with corresponding

p̃ · PN(p̃) = 1
2
− s

8b
. Also, p · PN(p) is given by Eqn. (EC.14) (or Eqn. (EC.17)), and F̃N

s (p) is given by

Eqn. (EC.15) (or Eqn. (EC.18)).

Finally, we will establish that when b≤ s/2 (resp. b≥ s/2), p̃= b
s

(resp. p̃= 0.5) is indeed a Pareto-dominant

equilibrium solution. In particular, we need to show that they satisfy
∫ 1

0
f̃Ns (p)dp= 1 and F̃N

s (p)≤ Fs (p)

When b≤ s/2, from Eqn. (EC.7), we can deduce the probability density function, f̃Ns (p), as follows:

f̃Ns (p) =


0 if 0≤ p≤ p;
2b
s

p̃·PN (p̃)

p2
if p≤ p≤ p̃;

1 if p̃≤ p≤ 1.

(EC.19)

Because p̃ ≤ θ, we have PN(p̃) = 1 − s
2b
p̃. Thus,

∫ 1

0
f̃Ns (p)dp =

∫ p̃
p=p̃·PN (p̃)

2b
s

p̃·PN (p̃)

p2
dp +

∫ 1

p̃
1dp = 2b

s
(1 −

PN(p̃))+(1− p̃) = 1. In addition, when p̃= b
s
, we show in what follows that, for any p, we have F̃N

s (p)≤ Fs(p):

From Eqn. (EC.7), we know that: 1. If p ≤ p, we have F̃N
s (p) = 0 < p = Fs(p); 2. If p ≤ p ≤ p̃, we have

F̃N
s (p)−Fs(p) = 2b

s
(1− p̃·PN (p̃)

p
)−p, where p̃ ·PN(p̃) = b

2s
. Since the second-order derivative

∂2(F̃Ns (p)−Fs(p))
∂p2

=

− 2b2

p3s2
≤ 0, then the first-order derivative

∂(F̃Ns (p)−Fs(p))
∂p

= b2

p2s2
− 1 is decreasing in p, that is

∂(F̃Ns (p)−Fs(p))
∂p

≥
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∂(F̃Ns (p)−Fs(p))
∂p

|p=p̃ = 0. Therefore, we can deduce that F̃N
s (p)−Fs(p) is increasing in p, then F̃N

s (p)−Fs(p)≤

F̃N
s (p̃)−Fs(p̃) = 0, i.e., F̃N

s (p)≤ Fs(p). 3. If p≥ p̃, we have F̃N
s (p) = p= Fs(p).

When b≥ s/2, from Eqn. (EC.15), we can deduce the probability density function, f̃Ns (p), as follows:

f̃Ns (p) =


0 if 0≤ p≤ p;
2b
s

p̃·PN (p̃)

p2
if p≤ p≤ p̃;

1 if p̃≤ p≤ 1.

(EC.20)

Because p̃ ≤ 0.5 ≤ θ, we have PN(p̃) = 1 − s
2b
p̃. Thus,

∫ 1

0
f̃Ns (p)dp =

∫ p̃
p=p̃·PN (p̃)

2b
s

p̃·PN (p̃)

p2
dp +

∫ 1

p̃
1dp =

2b
s

(1− PN(p̃)) + (1− p̃) = 1. In addition, when p̃ = 0.5, we show in what follows that, for any p, we have

F̃N
s (p)≤ Fs(p):

From Eqn. (EC.15), we know that: 1. If p ≤ p, we have F̃N
s (p) = 0 < p = Fs(p); 2. If p ≤ p ≤ p̃, we

have F̃N
s (p) − Fs(p) = 2b

s
(1 − p̃·PN (p̃)

p
) − p, where p̃ · PN(p̃) = 1

2
− s

8b
. Since the second-order derivative

∂2(F̃Ns (p)−Fs(p))
∂p2

= s−4b
2p3s
≤ 0, then the first-order derivative

∂(F̃Ns (p)−Fs(p))
∂p

=
b
s
− 1

4

p2
− 1 is decreasing in p, that is

∂(F̃Ns (p)−Fs(p))
∂p

≥ ∂(F̃Ns (p)−Fs(p))
∂p

|p=p̃ = 0. Therefore, we can deduce that F̃N
s (p)−Fs(p) is increasing in p, then

F̃N
s (p)−Fs(p)≤ F̃N

s (p̃)−Fs(p̃) = 0, i.e., F̃N
s (p)≤ Fs(p). 3. If p≥ p̃, we have F̃N

s (p) = p= Fs(p). �

Proof of Corollary 1 From Theorem 1, we know that when b≤ s/2, we have
∂( 2b

s (1− b
2s·p ))

∂b
≤ 0,

∂( b
2s

)

∂b
≥ 0,

and
∂( b
s
)

∂b
≥ 0. That is, F̃N

s (p) decreases in b. Similarly, we have
∂( 2b

s (1− b
2s·p ))

∂s
≥ 0,

∂( b
2s

)

∂s
≤ 0, and

∂( b
s
)

∂s
≤ 0,

which together suggest that F̃N
s (p) increases in s. On the other hand, when b > s/2, the result that F̃N

s (p)

decreases in b directly comes from the facts that
∂( 2b

s (1−(0.5− s
8b ) 1

p ))
∂b

≤ 0 and
∂(0.5− s

8b
)

∂b
≥ 0; and the result that

F̃N
s (p) increases in s comes from

∂( 2b
s (1−(0.5− s

8b ) 1
p ))

∂s
≥ 0 and

∂(0.5− s
8b

)

∂s
≤ 0. �

Proof of Proposition 1 We start with the first part of this proposition: QN increases in b and s. From

Theorem 1, we can show that qN = db for db/ds ≤ 0.5 and qN = ds/2 for db/ds > 0.5. Then, we can derive the

expressions of QN for the following two cases:

QN =

{∫ ∫
D
qNdDbdDs = b

6s
(3s− 2b) if b/s≤ 0.5;∫ ∫

D
qNdDbdDs = s

24b
(6b− s) if b/s > 0.5.

When b/s≤ 0.5, we have ∂QN

∂b
= 1

2
− 2b

3s
> 0, and ∂QN

∂s
= b2

3s2
> 0. Similarly, when b/s > 0.5, we have ∂QN

∂b
=

s2

24b2
> 0, and ∂QN

∂s
= 1

4
− s

12b
> 0.

Next, we consider the second part of this proposition: TN increases in b and is unimodal in s. First, we need

to derive the expression for TN , and to this end, we consider two cases: b≤ s/2 and b > s/2. For the first case

where b≤ s/2, recall that when db ≤ ds · F̃N
s (0.5), pNmax is given by db = ds · F̃N

s (pNmax); when db >ds · F̃N
s (0.5),

pNmax = 0.5. Then, we have three possibilities: if db
ds
≤ b

s
, then we have pNmax ≤ b

s
, which indicates that pNmax is

given by db = ds · 2bs (1− b
2s

1
pNmax

); if b
s
< db

ds
≤ 1

2
, then we have b

s
< pNmax ≤ 1

2
, which suggests that pNmax is given

by db = ds · pNmax; and finally, if db
ds
> 1

2
, then we have pNmax = 1

2
. Therefore, pNmax is given by

pNmax =


b
2s

1− db
ds

s
2b

if db
ds
≤ b

s
;

db
ds

if b
s
< db

ds
≤ 1

2
;

1
2

if db
ds
> 1

2
.
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Recall that when b≤ s
2
, we have

f̃Ns (p) =


0 if p≤ b

2s
;

b2

s2
1
p2

if b
2s
< p≤ b

s
;

1 if p > b
s
.

and tN =

{
ds ·
∫ pNmax
0

p · f̃Ns (p) dp if db
ds
≤ 1

2
;

ds ·
∫ 0.5

0
p · f̃Ns (p) dp if db

ds
> 1

2
.

Then, we can explicitly express tN as follows:

tN =


ds ·
∫ b

2s

1− db
ds

s
2b

b
2s

p · b2
s2

1
p2
dp= ds · b

2

s2
[log(

b
2s

1− db
ds

s
2b

)− log( b
2s

)] if db
ds
≤ b

s
;

ds ·
∫ b
s
b
2s

p · b2
s2

1
p2
dp+ ds ·

∫ db
ds
b
s

p dp= ds · b
2

s2
[log( b

s
)− log( b

2s
)] + ds · ( 1

2

d2b
d2s
− 1

2
b2

s2
) if b

s
< db

ds
≤ 1

2
;

ds ·
∫ b
s
b
2s

p · b2
s2

1
p2
dp+ ds ·

∫ 0.5
b
s
p dp= ds · b

2

s2
[log( b

s
)− log( b

2s
)] + ds · ( 1

8
− 1

2
b2

s2
) if db

ds
> 1

2
.

Therefore, when b ≤ s
2
, we have TN =

∫ ∫
D
tNdDbdDs = b2(2−log(4b)+log(s))

6s
. Next, similarly when b > s

2
, we

can show that

pNmax =


1
2
− s

8b

1− db
ds

s
2b

if db
ds
≤ 1

2
;

1
2

if db
ds
> 1

2
.

And, we have

f̃Ns (p) =


0 if p≤ 1

2
− s

8b
;

( b
s
− 1

4
) 1
p2

if 1
2
− s

8b
< p≤ p̃;

1 if p > p̃.

and tN =

{
ds
∫ pNmax
0

pf̃Ns (p)dp if db
ds
≤ 1

2
;

ds
∫ 0.5

0
pf̃Ns (p)dp if db

ds
> 1

2
.

Then, tN can be explicitly expressed as follows:

tN =

ds ·
∫ 1

2
− s

8b

1− db
ds

s
2b

1
2
− s

8b

p · ( b
s
− 1

4
) 1
p2
dp= ds · ( bs −

1
4
)[log(

1
2
− s

8b

1− db
ds

s
2b

)− log( 1
2
− s

8b
)] if db

ds
≤ 1

2
;

ds ·
∫ 1

2
1
2
− s

8b

p · ( b
s
− 1

4
) 1
p2
dp= ds · ( bs −

1
4
)[log( 1

2
)− log( 1

2
− s

8b
)] if db

ds
> 1

2
.

Therefore, when b > s
2
, we have TN =

∫ ∫
D
tNdDbdDs =

(4b−s)(b log(4− sb )−b log(4)+s)
24b

. To summarize, TN is

given by

TN =

{
b2(2−log(4b)+log(s))

6s
if b

s
≤ 1

2
;

(4b−s)(b log(4− sb )−b log(4)+s)
24b

if b
s
> 1

2
.

To show TN increases in b, we start with the case of b
s
≤ 1

2
, where ∂3TN

∂b3
=− 1

3bs
< 0. That is, ∂

2TN

∂b2
decreases

in b. Since as b→ 0+, we have ∂2TN

∂b2
= −2 log(4b)+2 log(s)+1

6s
> 0; when b= s/2, we have ∂2TN

∂b2
=− log(4)−1

6s
< 0.

That is, ∂T
N

∂b
first increases in b, then decreases in b. Since when b→ 0+, we have ∂TN

∂b
= b(−2 log(4b)+2 log(s)+3)

6s
>

0; when b= s/2, we have ∂TN

∂b
= 1

4
− log(2)

6
> 0. Therefore, TN increases in b. In the case of b

s
> 1

2
, we have

∂TN

∂b
=

4b2 log(4− sb )−4b
2 log(4)+s(b+s)

24b2
> 0, which suggests that TN increases in b.

Finally, we will show TN is unimodal in s. For the case of b
s
≤ 1

2
, we have ∂TN

∂s
= b2(log(b)−log(s)−1+log(4))

6s2
< 0,

which directly suggests that TN decreases in s. As we have TN = 1
12
b(2 − log(2)) > 0 for s = 2b and we

have TN = 0 for s→ +∞. In other words, when b
s
≤ 1

2
, we know that TN decreases from 1

12
b(2− log(2))

to 0. For the case of b
s
> 1

2
, we have ∂2TN

∂s2
= 1

24

(
1

4b−s −
2
b

)
< 0. That is, ∂TN

∂s
decreases in s. As ∂TN

∂s
=

−b log(4− sb )+b(3+log(4))−2s
24b

= 1
8
> 0 for s = 0 and ∂TN

∂s
= 1

24
(log(2)− 1) < 0 for s = 2b, we have that TN first

increases in s and then decreases in s. Since we have TN = 0 for s = 0, we have TN = 1
12
b(2− log(2)) for

s= 2b. That is, for the case of b
s
> 1

2
, we know that TN first increases from 0 to some maximum values and

then decreases from the maximum value to 1
12
b(2− log(2)). Combining these two cases, we know that TN is

continuous and is unimodal in s. �
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Proof of Theorem 2 Similar to the proof for Theorem 1, we define the CDF of the sellers’ equilibrium

listing price distribution as follows.

F̃P
s (p) =

{
FP
s (p) if 0≤ p≤ p̃;

Fs (p) if p̃≤ p≤ 1
(EC.21)

where

p̃= max{arg max
p

{
p ·PP (p)

}
}. (EC.22)

We have

p ·PP (p) =

{
p · 1 if 0≤ p≤ p;
p̃ ·PP (p̃) if p≤ p≤ p̃.

(EC.23)

Depending on the realized values of Db and Ds, A seller will be able to sell the product at price p if and

only if Db · (1−Fb(p))≥Ds · F̃P
s (p)⇔Db ≥ Ds·F̃Ps (p)

1−Fb(p)
⇔Ds ≤ Db(1−Fb(p))

F̃Ps (p)
. It follows from Eqn. (3) that

PP (p) = E
Ds,Db

[
1

{
Db · (1−Fb(p))≥Ds · F̃P

s (p)
}]

=

∫ s

0

∫ b

Ds·F̃Ps (p)

1−Fb(p)

1

bs
dDbdDs (EC.24)

=

∫ b

0

∫ Db(1−Fb(p))
F̃Ps (p)

0

1

bs
dDsdDb (EC.25)

Let us use θ to denote the solution of p to b · (1−Fb(p)) = s · F̃P
s (p). We will discuss two cases when p̃≤ θ

and when p̃≥ θ, to find the possible solution of p̃ defined in Eqn. (EC.22).

Case (1). p̃ ≤ θ. Case (1a). When 0 ≤ p ≤ p̃(≤ θ), we have
s·F̃Ps (p)

1−Fb(p)
≤ b. Also, we have F̃P

s (p) = FP
s (p)

from Eqn. (EC.21). It follows from Eqn. (EC.24) that PP (p) =
∫ s
0

∫ b
DsFPs (p)

1−Fb(p)

1
bs
dDbdDs = 1− s

2b

FPs (p)

1−p . Case

(1b). When p̃≤ p≤ θ, we have
s·F̃Ps (p)

1−Fb(p)
≤ b and F̃P

s (p) = Fs(p). It follows from Eqn. (EC.24) that PP (p) =∫ s
0

∫ b
DsFs(p)
1−Fb(p)

1
bs
dDbdDs = 1 − s

2b
p

1−p . Case (1c). When (p̃ ≤)θ ≤ p ≤ 1, we also have F̃P
s (p) = Fs(p) from

Eqn. (EC.21). However, because
s·F̃Ps (p)

1−Fb(p)
≥ b, it is easier to calculate PP (p) using Eqn. (EC.25). It follows

that PP (p) =
∫ b
0

∫ Db(1−Fb(p))
Fs(p)

0
1
bs
dDsdDb = b

2s
1−p
p

.

Combining Cases (1a)-(1c), we have

p ·PP (p) =


p
[
1− s

2b

FPs (p)

1−p

]
if 0≤ p≤ p̃;

p
[
1− s

2b
p

1−p

]
if p̃≤ p≤ θ;

p
[
b
2s

1−p
p

]
if θ≤ p≤ 1.

(EC.26)

By comparing Eqn. (EC.26) and Eqn. (EC.23), p ·PP (p) must have the following structure

p ·PP (p) =



p
[
1− s

2b

FPs (p)

1−p

]
= p if 0≤ p≤ p;

p
[
1− s

2b

FPs (p)

1−p

]
= p̃ ·PP (p̃) if p≤ p≤ p̃;

p
[
1− s

2b
p

1−p

]
if p̃≤ p≤ θ;

p
[
b
2s

1−p
p

]
if θ≤ p≤ 1.

(EC.27)

Eqn. (EC.27), together with Eqn. (EC.21) and the fact that no customer charges more than p̃ unless the

reservation price constraint is binding, we have

F̃P
s (p) =


FP
s (p) = 0 if 0≤ p≤ p;

FP
s (p) = 2b

s
(1− p)(1− p̃·PP (p̃)

p
) if p≤ p≤ p̃;

Fs(p) = p if p̃≤ p≤ 1.

(EC.28)
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From Eqn. (EC.27), we know that, when p̃ ≤ p ≤ θ, p · PP (p) = p
[
1− s

2b
p

1−p

]
= p− s

2b
p2

1−p is concave in

p by first increasing up to the point p∗ = 1 −
√

s
2b+s

and then decreasing (the maximum value obtained

at p∗ is p∗ · PP (p∗) =
b+s−
√

(2b+s)s

b
); when θ ≤ p ≤ 1, p · PP (p) = p

[
b
2s

1−p
p

]
= b

2s
(1− p) is decreasing in p.

Furthermore, we have b · (1− Fb(θ)) = s · F̃P
s (θ) by definition, and F̃P

s (θ) = θ from Eqn. (EC.28), we can

derive θ = b
b+s

and easily verify that p · PP (p) is continuous at θ = b
b+s

. To ensure that the maximizers of

p ·PP (p) are indeed [p, p̃], we need to have p∗ ≤ p̃. Therefore, we can deduce that the candidate p̃ satisfies

p∗ ≤ p̃≤ θ, or equivalently, 1−
√

s
2b+s
≤ p̃≤ b

b+s
.

Case (2). p̃≥ θ. Case (2a). When 0≤ p≤ θ(≤ p̃), we have F̃P
s (p) = FP

s (p) and
s·F̃Ps (p)

1−Fb(p)
≤ b. Thus, PP (p)

has the same expression as in Case 1a. Case (2b). When θ≤ p≤ p̃, we have
s·F̃Ps (p)

1−Fb(p)
≥ b and F̃P

s (p) = FP
s (p), it

follows from Eqn. (EC.25) that PP (p) =
∫ b
0

∫ Db(1−Fb(p))
FPs (p)

0
1
bs
dDsdDb = b

2s
1−p
FPs (p)

. Case (2c). When (θ≤)p̃≤ p≤ 1,

we have
s·F̃Ps (p)

1−Fb(p)
≥ b and F̃P

s (p) = Fs(p). It follows that PP (p) has the same expression as in Case (1c).

Combining Cases (2a)-(2c), we have

p ·PP (p) =


p
[
1− s

2b

FPs (p)

1−p

]
if 0≤ p≤ θ;

p
[
b
2s

1−p
FPs (p)

]
if θ≤ p≤ p̃;

p
[
b
2s

1−p
p

]
if p̃≤ p≤ 1.

(EC.29)

By comparing Eqn. (EC.29) and Eqn. (EC.23), we have p · PP (p) for two cases, when p ≤ θ and when

p≥ θ.

On one hand, when p≤ θ(≤ p̃), we have

p ·PP (p) =



p
[
1− s

2b

FPs (p)

1−p

]
= p if 0≤ p≤ p;

p
[
1− s

2b

FPs (p)

1−p

]
= p̃ ·PP (p̃) if p≤ p≤ θ;

p
[
b
2s

1−p
FPs (p)

]
= p̃ ·PP (p̃) if θ≤ p≤ p̃;

p
[
b
2s

1−p
p

]
if p̃≤ p≤ 1.

(EC.30)

Eqn. (EC.30), together with Eqn. (EC.21) and the fact that no customer charges more than p̃ unless the

reservation price constraint is binding, we have

F̃P
s (p) =


0 if 0≤ p≤ p;
2b
s

(1− p)(1− p̃·PP (p̃)

p
) if p≤ p≤ θ;

b
2s

p(1−p)
p̃·PP (p̃)

if θ≤ p≤ p̃;
p if p̃≤ p≤ 1.

(EC.31)

Because F̃P
s (p) needs to be continuous, we know that F̃P

s (θ−) = F̃P
s (θ+) ⇔ 2b

s
(1 − θ)(1 − p̃·PP (p̃)

θ
) =

b
2s

θ(1−θ)
p̃·PP (p̃)

⇔ θ = 2p̃ · PP (p̃). That is, F̃P
s (θ) = F̃P

s (θ−) = F̃P
s (θ+) = b

s
(1 − θ) and it is easy to verify that

b · (1−Fb(θ)) = s · F̃P
s (θ).

On the other hand, when p≥ θ, we have from Eqn. (EC.29) and Eqn. (EC.23) that

p ·PP (p) =



p
[
1− s

2b

FPs (p)

1−p

]
= p if 0≤ p≤ θ;

p
[
b
2s

1−p
FPs (p)

]
= p if θ≤ p≤ p;

p
[
b
2s

1−p
FPs (p)

]
= p̃ ·PP (p̃) if p≤ p≤ p̃;

p
[
b
2s

1−p
p

]
if p̃≤ p≤ 1.

(EC.32)
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And it follows that

F̃P
s (p) =


0 if 0≤ p≤ θ;
b
2s

(1− p) if θ≤ p≤ p;
b
2s

p(1−p)
p̃·PP (p̃)

if p≤ p≤ p̃;
p if p̃≤ p≤ 1.

(EC.33)

However, in this case, F̃P
s (p) is not continuous at p= p, so there cannot be an equilibrium when p≥ θ. So

for Case (2), the candidate p̃ satisfies (p≤)θ≤ p̃.

To summarize all the analysis so far, from Case 1, we know that if p∗ ≤ p̃ ≤ θ, p · PP (p) is given by

Eqn. (EC.27), and F̃P
s (p) is given by Eqn. (EC.28), also, p̃ ·PP (p̃) is decreasing in p̃. From Case 2, we know

that if p̃ ≥ θ, p · PP (p) is given by Eqn. (EC.30), and F̃P
s (p) is given by Eqn. (EC.31), also p̃ · PP (p̃) is

decreasing in p̃. Therefore, combining Case 1 and Case 2, we know that when p̃= p∗ = 1−
√

s
2b+s

, p̃ ·PP (p̃)

achieves its maximum. Together with Eqn. (EC.22), we know that when p̃ = 1 −
√

s
2b+s

, all the sellers’

expected revenue p ·PP (p) also achieve the maximum. That is, p̃= 1−
√

s
2b+s

is the Pareto-dominant solution,

with corresponding p̃ ·PN(p̃) =
b+s−
√

(2b+s)s

b
. Also, p ·PN(p) is given by Eqn. (EC.27), and F̃N

s (p) is given

by Eqn. (EC.28).

Finally, we will establish that p̃= 1−
√

s
2b+s

is indeed a Pareto-dominant equilibrium solution. In partic-

ular, we need to show that it satisfies
∫ 1

0
f̃Ps (p)dp= 1 and F̃P

s (p)≤ Fs (p).

From Eqn. (EC.28), we can deduce the probability density function, f̃Ps (p), as follows:

f̃Ps (p) =


0 if 0≤ p≤ p;
2b
s

( p̃·P
P (p̃)

p2
− 1) if p≤ p≤ p̃;

1 if p̃≤ p≤ 1.

(EC.34)

Because p̃≤ θ, we have PP (p̃) = 1− s
2b

p̃

1−p̃ . Thus,∫ 1

0

f̃Ps (p)dp=

∫ p̃

p=p̃·PP (p̃)

2b

s
(
p̃ ·PP (p̃)

p2
− 1)dp+

∫ 1

p̃

1dp=
2b

s
(1−PP (p̃))(1− p̃) + (1− p̃) = 1.

In what follows, we will show that, for any p, we have F̃P
s (p)≤ Fs(p). From Eqn. (EC.28), we know that: 1. If

p≤ p, we have F̃P
s (p) = 0< p= Fs(p); 2. If p≤ p≤ p̃, we have F̃P

s (p)−Fs(p) = 2b
s

(1−p)(1− p̃·PP (p̃)

p
)−p, where

p̃ · PP (p̃) =
b+s−
√
s(2b+s)

b
. Since the second-order derivative

∂2(F̃Ps (p)−Fs(p))
∂p2

= −
4
(
b+s−
√
s(2b+s)

)
sp3

≤ 0, then

the first-order derivative
∂(F̃Ps (p)−Fs(p))

∂p
=

2[b+s−
√
s(2b+s)]−p2(2b+s)

sp2
is decreasing in p, that is

∂(F̃Ps (p)−Fs(p))
∂p

≥
∂(F̃Ps (p)−Fs(p))

∂p
|p=p̃ = 0. Therefore, we can deduce that F̃P

s (p)−Fs(p) is increasing in p, then F̃P
s (p)−Fs(p)≤

F̃P
s (p̃)−Fs(p̃) = 0, i.e., F̃P

s (p)≤ Fs(p). 3. If p≥ p̃, we have F̃P
s (p) = p= Fs(p). �

Proof of Theorem 3 The sellers’ listing price distribution F̃M
s (p|db, ds) and selling probability function

PM(p|db, ds) can be deduced directly from the analysis in §5.2. �

Proof of Corollary 2 It is clear from (5) that pMmax(db, ds) weakly increases in db and decreases in ds.

Therefore, we can immediately show that F̃M
s (p|db, ds) weakly decreases in db and increases in ds. That is,

Pr(p > x|db, ds) = 1− F̃M
s (x|db, ds) weakly increases in db and decreases in ds for all x∈ [0,1]. �

Proof of Theorem 4 The sellers’ listing price distribution F̃B
s (p|db, ds) and selling probability function

PB(p|db, ds) can be deduced directly from the analysis in §5.3. �

 Electronic copy available at: https://ssrn.com/abstract=3259465 



ec11

Proof of Theorem 5 1. Compare Q in Model N and Model M: As qN = qM , we have QN =QM .

2. Compare Q in Model P and Model B: As in Model P, F̃P
s (p) stochastically dominates FP

s (p). Let us

assume pBmax ≥ pPmax, then db[1−Fb(pPmax)] = ds · F̃P
s (pPmax)≤ ds ·FP

s (pPmax)≤ ds ·FP
s (pBmax) = db[1−Fb(pBmax)],

which contradicts db[1 − Fb(pPmax)] ≥ db[1 − Fb(pBmax)]. Hence, we have pBmax ≤ pPmax. Therefore, we have

qP = db[1−Fb(pPmax)]≤ db[1−Fb(pBmax)] = qB, which directly suggests that QP ≤QB.

3. Compare Q in Model M and Model B: Denote θ= b
s
, then

b(QM −QB)/s2 =

{
1
3
θ3 log(1 + 1/θ) + 1

3
log(1 + θ) + 1

6
(−2θ3 + θ2− 2θ) if θ≤ 1

2
;

1
3
θ3 log(1 + 1/θ) + 1

3
log(1 + θ)− 1

24
(8θ2 + 2θ+ 1) if θ > 1

2
.

When θ ≤ 1
2
, we have ∂(b(QM−QB)/s2)

∂θ
= θ2[log

(
1
θ

+ 1
)
− 1] ≥ θ2[log(3)− 1] > 0, which implies that b(QM −

QB)/s2 increases in θ. In addition, when θ→ 0+, we have b(QM −QB)/s2 = 1
3
θ3 log(1 + 1/θ)→ 0+. There-

fore, b(QM −QB)/s2 ≥ 0. On the other hand, when θ > 1
2
, we have ∂4(b(QM−QB)/s2)

∂θ4
=− 2

θ(θ+1)3
< 0. Hence,

∂3(b(QM−QB)/s2)

∂θ3
decreases in θ. When θ= 1/2, we have ∂3(b(QM−QB)/s2)

∂θ3
= log(9)− 16

9
> 0; and when θ→+∞,

we have ∂3(b(QM−QB)/s2)

∂θ3
= 0, which suggests ∂2(b(QM−QB)/s2)

∂θ2
increases in θ. Similarly, when θ = 1/2, we

have ∂2(b(QM−QB)/s2)

∂θ2
= log(3) − 4

3
< 0; and when θ → +∞, we have ∂2(b(QM−QB)/s2)

∂θ2
= 0, which suggests

that ∂(b(QM−QB)/s2)

∂θ
decreases in θ. Next, when θ = 1/2, we have ∂(b(QM−QB)/s2)

∂θ
= 1

4
(log(3)− 1) > 0; and

when θ= 2, we have ∂(b(QM−QB)/s2)

∂θ
= log

(
81
16

)
− 7

4
< 0. That is, b(QM −QB)/s2 first increases in θ and then

decreases in θ. At last, when θ = 1/2, we have b(QM −QB)/s2 = 1
24

(
−4 + log(3) + 8 log

(
3
2

))
> 0; and when

θ= 2, we have b(QM −QB)/s2 =− 37
24
− 1

3
8 log(2) + log(27)< 0. Therefore, there exists a threshold θ1, whose

numerical solution is approximately 1.06242, such that if 1
2
≤ θ ≤ θ1, then QM ≥ QB; else if θ ≥ θ1, then

QM ≤QB. Combining the case when θ ≤ 1
2

and the case when θ > 1
2
, we can conclude that if θ ≤ θ1, then

QM ≥QB; else if θ≥ θ1, then QM ≤QB. �

Proof of Proposition 2 Result follows from Theorem 5 and the analysis in §6.1. �

Proof of Theorem 6 We start with restating T in three models. From Proposition 1, we can state bsTN

explicitly as follows:

bsTN =

{
1
6
b3[2− log(4b) + log(s)] if b

s
≤ 1

2
;

1
24
s(4b− s)[b log

(
4− s

b

)
− b log(4) + s] if b

s
> 1

2
.

For Model M: Recall that we have tM =
d2b
ds

for db ≤ ds
2

and tM = ds
4

for db ≥ ds
2

. Directly, we can state bsTM

as follows:

bsTM =

{
1
3
b3 log

(
s
b

)
+ 1

18
b3(5− log(64)) if b

s
≤ 1

2
;

1
72
s2(9b− 2s) if b

s
≥ 1

2
.

For Model B: From tB =
d2b ·ds

(db+ds)2
, we have

bsTB =
1

3
b3 log

(
b+ s

b

)
− 2

3
s3 log

(
b+ s

s

)
+

1

3
bs(2s− b).

Next, we will compare T in three models:

1. Compare T in Model N and Model M: Let’s define θ= b
s
. Then b(TN −TM)/s2 is given as follows:

b(TN −TM)/s2 =

{
1
18
θ3(3 log(θ) + 1) if θ≤ 1

2
;

1
72

(
−12θ2 log(4) + 3θ(1 + log(4)) + 3(4θ− 1)θ log

(
4− 1

θ

)
− 1
)

if θ > 1
2
.
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When θ ≤ 1
2
, we have, ∂(b(TN−TM )/s2)

∂θ
= 1

6
θ2(3 log(θ) + 2)≤ 0. In addition, we have b(TN − TM)/s2 = 0 for

θ → 0+ and b(TN − TM)/s2 = 1
144

(1 − log(8)) < 0 for θ = 1/2. Therefore, for θ ≤ 1
2
, we have TN ≤ TM .

When θ ≥ 1
2
, we have ∂(b(TN−TM )/s2)

∂θ
=

(−8θ log(4)+(8θ−1) log(4− 1
θ )+2+log(4))

24
≤ 0. Together with the fact that

b(TN − TM)/s2 = 1
144

(1− log(8)) < 0 for θ = 1/2 and TN ≤ TM for θ ≥ 1
2
. Combining these two cases, we

conclude that TN ≤ TM .

2. Compare T in Model M and Model B: We can state b(TM −TB)/s2 as follows:

b(TM −TB)/s2 =

{
1
3

(2− θ3) log (1 + θ) + 1
18

(5θ3− 6θ3 log(2) + 6θ2− 12θ) if θ≤ 1
2
;

− 1
3
θ3 log (1 + 1/θ) + 2

3
log (1 + θ)− 1

72
(−24θ2 + 39θ+ 2) if θ > 1

2
.

When θ≤ 1
2
, we can show that ∂4(b(TM−TB)/s2)

∂θ4
=− 2(θ(θ(θ+4)+6)+6)

(θ+1)4
< 0. Together with the observations that

∂3(b(TM−TB)/s2)

∂θ3
= 3− log(4)> 0 for θ→ 0+ and ∂3(b(TM−TB)/s2)

∂θ3
= 10

27
− log(9)< 0 for θ = 1/2, we have that

∂2(b(TM−TB)/s2)

∂θ2
first increases in θ and then decreases in θ. Similarly, we can show that ∂(b(TM−TB)/s2)

∂θ

first increases in θ and then decreases in θ; and b(TM − TB)/s2 increases in θ. We can further show that

b(TM − TB)/s2→ 0+ for θ→ 0+ and b(TM − TB)/s2 = log
(

35/8

22/3

)
− 31

144
> 0 for θ = 1/2. Therefore, in the

case of θ ≤ 1
2
, we have b(TM − TB)/s2 > 0, i.e., TM ≥ TB. For θ ≥ 1

2
, we can show that ∂4(b(TM−TB)/s2)

∂θ4
=

− 4θ−2
θ(θ+1)4

< 0. Together with the two boundary conditions that ∂3(b(TM−TB)/s2)

∂θ3
= 64

27
− log(9)> 0 for θ= 1/2

and ∂3(b(TM−TB)/s2)

∂θ3
= 0 for θ→ +∞, we conclude that ∂2(b(TM−TB)/s2)

∂θ2
increases in θ. Similarly, we can

show that ∂(b(TM−TB)/s2)

∂θ
decreases in θ. Next, note that ∂(b(TM−TB)/s2)

∂θ
= 1

24
(7− 6 log(3)) > 0 for θ = 1/2

and ∂(b(TM−TB)/s2)

∂θ
= 35

24
− 4 log

(
3
2

)
< 0 for θ = 2, which suggest that b(TM − TB)/s2 first increases in θ

and then decreases in θ. At last, Since we have b(TM − TB)/s2 = log
(

35/8

22/3

)
− 31

144
> 0 for θ = 1/2 and

b(TM − TB)/s2 = 2
9

+ log
(

4·22/3

9

)
< 0 for θ = 2, there exists a threshold θ2, whose numerical solution is

approximately 0.919008, such that if 1
2
≤ θ≤ θ2, then TM ≥ TB; else if θ≥ θ2, then TM ≤ TB.

3. Compare T in Model N and Model B: We first state b(TN −TB)/s2 as follows:

b(TN −TB)/s2 =


1
6
θ3(2− log(4θ)) + 1

3

(
θ3 log

(
θ

θ+1

)
+ (θ− 2)θ+ 2 log(θ+ 1)

)
if θ≤ 1

2
;

1
3

(
θ3 log

(
θ

θ+1

)
+ θ(θ− 2) + 2 log(θ+ 1)

)
− 1

24
(4θ− 1)

(
θ log

(
4θ

4θ−1

)
− 1
)

if θ > 1
2
.

When θ≤ 1
2
, we have ∂(b(TN−TB)/s2)

∂θ
=

θ2(5θ−3(θ+1) log(4θ)+6(θ+1) log( θ
θ+1 )+11)

6(θ+1)
. Since we have ∂(b(TN−TB)/s2)

∂θ
→

0+ for θ → 0+ and ∂(b(TN−TB)/s2)

∂θ
= 1

8
(3 − log(18)) ≥ 0 for θ = 1/2, b(TN − TB)/s2 first decreases in θ

and then increases in θ. As b(TN − TB)/s2 → 0+ for θ→ 0+ and b(TN − TB)/s2 = 1
48

(−10 − 33 log(2) +

30 log(3))≥ 0 for θ = 1/2, there exists a threshold θ3, whose numerical solution is approximately 0.323018,

such that if 0 ≤ θ ≤ θ3, then TN ≤ TB; else if θ3 ≤ θ ≤ 1
2
, then TN ≥ TB. When θ ≥ 1

2
, we can show

that ∂2(b(TN−TB)/s2)

∂θ2
= θ(θ(8θ(24θ+31)−57)+6)+8θ(4θ−1)(θ+1)2(− log(−4θ)+6θ(log(θ)−log(θ+1))+log(1−4θ))−1

24θ(θ+1)2(4θ−1) < 0. Since

∂(b(TN−TB)/s2)

∂θ
= 1

8
(3 − log(18)) > 0 for θ = 1/2 and ∂(b(TN−TB)/s2)

∂θ
= 1

24
(17 − 38 log(2) + 7 log(3)) < 0 for

θ= 1, we conclude that b(TN −TB)/s2 first increases in θ and then decreases in θ. Finally, we observe that

b(TN − TB)/s2 = 1
48

(−10− 33 log(2) + 30 log(3))> 0 for θ = 1/2 and b(TN − TB)/s2 = 1
24

(log(108)− 5)< 0

for θ = 1. Therefore, there exists a threshold θ4, whose numerical solution is approximately 0.730385, such

that if 1
2
≤ θ≤ θ4, then TN ≥ TB; else if θ≥ θ4, then TN ≤ TB. �

Proof of Proposition 3 Result follows from Theorem 6 and the analysis in §6.2. �
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