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In this research, we consider an online assortment optimization problem, where a decision-maker sequen-

tially offers assortments to users instantaneously upon their arrivals and users select products from offered

assortments according to the contextual multinomial logit choice model. We propose a computationally

efficient Lasso-RP-MNL algorithm for the online assortment optimization problem under the cardinality

constraint in high-dimensional settings. The Lasso-RP-MNL algorithm combines the Lasso and random

projection as dimension reduction techniques to alleviate the computational complexity and improve the

learning and estimation accuracy under high-dimensional data. For each arriving user, the Lasso-RP-MNL

algorithm constructs an upper-confidence bound for each individual product’s attraction parameter, based

on which the optimistic assortment can be identified by solving a reformulated linear programming problem.

We demonstrate that for the significant feature dimension s, the total feature dimension d, and the sample

size dimension T , the expected cumulative regret under the Lasso-RP-MNL algorithm is upper bounded by

Õ(s
√

logd ·T
2
3 ), where Õ suppresses the logarithmic dependence on T . Such a regret upper bound matches

the informational theoretical regret lower bound under high-dimensional setting with limited samples, i.e.,

Ω(T
2
3 ). Furthermore, as the sample size increases, we can further improve the Lasso-RP-MNL algorithm’s

regret upper bound to Õ(s
√

logd · T
1
2 ), which also matches the regret lower bound in data-rich regimes,

i.e., Ω(T
1
2 ). Finally, through synthetic-data-based experiments and a high-dimensional XianYu assortment

recommendation experiment, we show that the Lasso-RP-MNL algorithm is computationally efficient and

outperforms other benchmarks in terms of the expected cumulative regret.

Key words : Online assortment optimization, contextual information, high-dimensional data, Lasso,

random projection, multinomial logit model, upper-confidence bound.

1. Introduction

Online assortment optimization problems have recently emerged in many internet applications, such

as e-tailing, digital advertising, recommendation, etc., where a decision-maker sequentially offers

assortments of substitutable products to users instantaneously upon their arrivals. For example,

an internet retailer offers an assortment of customized items to an arriving consumer; a search

engine displays an assortment of profitable advertisements in response to a user’s search query; an

online marketplace recommends an assortment of personalized products based on a user’s browsing

1



2

and purchasing history. To select reward-maximizing assortments, the decision-maker first needs

to accurately assess users’ utilities and choices, which are typically unknown a priori but can be

gradually learned through observing users’ responses to various assortments (Mahajan and van

Ryzin 1999). Hence, online assortment optimization problems require a judicious balance between

exploring different assortments to learn users’ choices and simultaneously exploiting assortments

that maximize immediate rewards. In the big data era, the growing availability of granular data

and high-dimensional contextual information for users and products has presented both promising

opportunities and vexing challenges for these online assortment optimization problems.

Rich contextual information provides the decision-maker with unprecedented opportunities to

improve his learning capability and prediction accuracy regarding users’ utilities and choices. Con-

sider the assortment recommendation practice at XianYu, a leading consumer-to-consumer online

marketplace for new and preowned products in China. Upon clicking a product link, the user is

redirected to the product information page, on which, along with typical product specifics and

transaction details, a “Guess What You Like” section displays a personalized assortment consisting

up to 20 suggested products. To optimally recommend 20 products, XianYu relies on contex-

tual information about the user and products to learn and predict the user’s utility and choice

concerning any given assortment. Realizing that more information leads to better learning and pre-

diction, XianYu has dramatically expanded the extent of contextual information and accelerated

its data collection efforts. Currently, the available contextual information at XianYu is extremely

high-dimensional: It contains more than 2 billion features, including user information (e.g., demo-

graphics, geographics, browsing/clicking history, etc.), product information (e.g., brand, color, size,

condition, etc.), and information about possible interactions between these two (e.g., the physi-

cal distance between the user and the product, whether the user’s searching history matches the

product, etc.). In practice, using this high-dimensional contextual information has significantly

improved XianYu’s learning and prediction accuracy regarding users’ choices, which in turn enables

better assortment decisions.

Yet, the decision-maker’s ability to use all available contextual information and effectively learn

the influences of all features on users’ utilities and choices is often impaired by the fact that

there are limited samples in practice. Specifically, to accurately estimate the influences of more

than 2 billion features via traditional statistical methods (e.g., maximum likelihood estimation),

XianYu will need billions or even trillions random samples. However, with approximately 4 million

daily “Guess What You Like” exposures, among which a very small percentage can be chosen

to perform costly learning experiments (Bastani and Bayati 2020), it may take decades before

XianYu can identify the influences of all features with reasonable accuracy. Moreover, due to the

intrinsically ever-changing nature of users’ tastes, these estimations are typically time sensitive:
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Estimations based on historical data stretching more than a year, or a few months for fashionable

products, will be less relevant for predicting users’ choices tomorrow. Hence, compared to the scale

of high-dimensional contextual information, available samples are extremely limited and therefore

constrain the decision-maker’s ability to fully utilize all available features to learn and update his

estimations.

Furthermore, even with sufficient samples to support effective learning, the decision-maker still

has to ensure that the online assortment optimization algorithm is computationally efficient. In

XianYu’s example, the average time that elapses between a user clicking a product link and the

web page displaying the recommended assortment is expected to be less than a half-second, which

includes time needed for learning/updating the estimations and optimizing recommended assort-

ments. However, a single estimation update for XianYu’s high-dimensional features can easily take

hours with high-performance computing technologies and state-of-the-art techniques, especially

when the sample size is not too small; combined with the time needed for optimizing assortments,

which is a nonlinear combinatorial optimization problem, the total computational time may far

exceed the half-second target mark.

To address these challenges, we propose a computationally efficient Lasso-RP-MNL algorithm

for online assortment optimization problems under the cardinality constraint in high-dimensional

settings. This algorithm combines both the Lasso (Tibshirani 1996) and random projection (John-

son and Lindenstrauss 1984) to improve the learning and estimation accuracy for high-dimensional

features with limited samples and follows the idea of upper-confidence bound (UCB) approach

(Auer 2002) to identify the optimistic assortment under the multinomial logit (MNL) choice model.

In particular, with a period length that exponentially increases in time, we periodically thresh-

old the Lasso estimator to identify and update significant features that have strong influences on

users’ utilities and choices; then, for each arriving user, we adopt random projection to reduce

the high-dimensional contextual information, excluding significant features already identified by

thresholding the Lasso, to a low-dimensional space and then estimate coefficients for both original

features thresholded by Lasso and projected features by random projection. Through this process,

the learning and parameter estimation can be performed in a low-dimensional fashion to signif-

icantly trim down the computational time, while maintaining high accuracy in predicting users’

choices. Furthermore, we show that thresholding the Lasso for feature selection will limit the long-

term negative influence of the information loss that is intrinsic to random projection and that

random projection can in turn alleviate the negative influence of possible model misspecification in

the Lasso due to limited samples. Next, to further reduce the computational complexity, instead of

constructing upper confidence bound for all assortments, we establish the upper-confidence bound
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for each individual product and then identify the optimistic assortment. Note that under the car-

dinality constrain, the optimal optimistic assortment is a combinatorial optimization problem and

can not be identified by the revenue-ordered sets (Rusmevichientong et al. 2010). Hence, we fol-

low Davis et al. (2013) to reformulate the optimal optimistic assortment problem into a linear

programming problem, which can be solved by various efficient solution algorithms.

Main Contributions:

We first establish the information theoretical regret lower bound for online assortment opti-

mization problem and show that under high-dimensional settings with limited samples, the Ω(T
2
3 )

regret lower bound is inevitable. Only when there are sufficient samples, the regret lower bound

can be transited to the standard Ω(T
1
2 ) regret lower bound.

Next, we demonstrate that the Lasso-RP-MNL algorithm can match the regret lower bound on T

and achieve a sub-logarithmic dependence on the feature dimension d. Specifically, we show that the

expected cumulative regret of the Lasso-RP-MNL algorithm is upper-bounded by Õ(s
√

logd ·T 2
3 ),

where s is significant feature dimension and d is the total feature dimension. Furthermore, as

the sample size increases, we can further improve the Lasso-RP-MNL algorithm’s regret upper

bound to Õ(s
√

logd · T 1
2 ). We believe that the Lasso-RP-MNL algorithm is the first assortment

algorithm in s-sparse high-dimensional settings to attain a sub-logarithmic dependence on the

feature dimension.

Finally, we benchmark the Lasso-RP-MNL algorithm to existing state-of-the-art algorithms in

the literature and industrial practice through both synthetic experiments and a real-life experiment

based on XianYu’s high-dimensional assortment recommendation dataset. We show that the Lasso-

RP-MNL algorithm is computationally efficient and can significantly improve the decision-maker’s

regret and revenue performance.

2. Related Literature

Our work is related to the dynamic assortment optimization literature, where users’ utilities (i.e.,

model parameters) are unknown to the decision-maker at the beginning but can be gradually

learned over multiple periods. Various models have been used in the assortment optimization litera-

ture, such as the MNL model (e.g., Ryzin and Mahajan 1999, Mahajan and Van Ryzin 2001), nested

logit (e.g., McFadden 1980, Gallego and Wang 2014, Li et al. 2015), exogenous demand model (e.g.,

Smith and Agrawal 2000, Netessine and Rudi 2003), Markov chain model (e.g., Blanchet et al.

2016, Feldman and Topaloglu 2017), and non-parametric models (e.g., Rusmevichientong et al.

2006, Farias et al. 2013). Among these models, the MNL model, which is adopted in this work,

is the most commonly used choice model in Economics, Marketing, and Operations Management

literature (Kök and Fisher 2007), mainly by virtue of its tractability in estimating unknown param-

eters and identifying optimal assortments. For extensive literature review on the MNL model and
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other assortment optimization models, we refer to Mahajan and van Ryzin (1999) and Kök et al.

(2015).

When there are limited number of products repetitively offered to incoming users, it is nat-

ural to consider the setting where the utility of each product is represented by an unknown

attraction parameter in the MNL model. Under this setting, Rusmevichientong et al. (2010) and

Sauré and Zeevi (2013) propose two explore-then-exploit algorithms, where the decision-maker

first offers pre-selected assortments in the exploration phase to attend desired estimation accu-

racy for these unknown parameters, and then goes to the exploitation phase to maximize his

expected reward. Rusmevichientong et al. (2010) show that their Adaptive Assortment algorithm

can attain O(N 2 log2 T ) cumulative regret bound, and Sauré and Zeevi (2013) demonstrate that

their separation-based policy can achieve O(N logT ) regret ratio bound, where N is the num-

ber of candidate products. Kallus and Udell (2016) consider a personalized assortment model to

extend the homogeneous users case to the heterogeneous case, and Bernstein et al. (2018) adopt

a Bayesian semi-parametric framework to propose a dynamic clustering policy to map users’ pro-

files to groups/clusters. It is worth noting that these works require certain a prior knowledge of

the separation gap parameter, which gauges the reward difference between the optimal and the

second-best assortment to regulate the exploration phase, without which these algorithms can per-

form quite poorly (Agrawal et al. 2019). Without assuming any prior knowledge of the separation

gap parameter, Agrawal et al. (2019) propose a UCB-type MNL-Bandit algorithm. Under a mild

assumption, the authors establish the regret upper bound Õ(
√
NT ). Agrawal et al. (2017) further

propose another Thompson-Sampling based algorithm that can attend a similar regret bound with

improved empirical performance. Cheung and Simchi-Levi (2017a) propose a UCB-type policy

under resource constrain and show that this policy can also attain Õ(
√
T ) regret upper bound.

Note that all of previous works assume that unknown parameters are associated with products

themselves (i.e., each product has an unique unknown attraction parameter). In practice, however,

the number of products can be enormous, and available products change from user to user, both

of which lead to an unnecessarily large number of unknown parameters needed to be learned.

Therefore, recognizing the facts that the difference among products can be represented by their

intrinsic features and that a smaller number of features are sufficient to identify a large number of

products in practice (Agrawal et al. 2019), the contextual MNL model assigns unknown parameters

to every unique feature and estimates these feature parameters separately. As features can be

shared among multiple products, the learning can now cross products (Oh and Iyengar 2021),

which suggests that the regret bound for the contextual MNL model can be independent of the

number of candidate products N .
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Chen et al. (2018) consider the contextual MNL model in which the feature information of

products can change over time (i.e., the underlying choice model is non-stationary) and develop

an explore-then-exploit UCB-based policy with Õ(d
√
T ) regret bound. Following a similar setting,

Oh and Iyengar (2021) propose another two explore-then-exploit UCB-based algorithms: The first

computationally efficient algorithm attain the regret bound of Õ(d
√
T ), and the second algorithm

reduces the regret bound to Õ(
√
dT ) under the Relaxed Symmetry assumption. Oh and Iyengar

(2019) develop two Thompson sampling algorithms and achieve Õ(d3/2
√
T ) and Õ(d

√
T ) Bayesian

regret, respectively. Ou et al. (2018) consider a linear utility MNL model, where item utilities are

represented by linear functions of d-dimension features, and propose the LUMB algorithm, which

achieves Õ(dK
√
T ) regret bound. Different from previous papers that study homogeneous users

under the stochastic arrival setting, Cheung and Simchi-Levi (2017b) study heterogeneous users

under the adversarial user arrival. The authors propose a Thompson Sampling based Pao-Ts policy

whose Bayesian regret upper bound satisfies Õ(N
√
T ) .

Yet, when the contextual information is high-dimensional, a polynomial, linear, or sublinear

dependence on the feature dimension d often hinders these algorithms from practically implement-

ing for online assortment optimization problems, mainly due to dissatisfied regret performance and

the excessive computational burden. In this work, we consider a s-sparse contextual MNL model

under high-dimensional setting and combine both the Lasso and random projection to develop

a simultaneously-explore-and-exploit Lasso-RP-MNL algorithm that is computationally efficient.

We show that Lasso-RP-MNL algorithm improves the regret bound to Õ(s
√

logd · T 2
3 ) in data-

poor regimes, where there are limited samples, and to Õ(s
√

logd ·T 1
2 ) in data-rich regimes, where

samples are large related to data dimensions. In addition, we prove that these two regret upper

bounds on T for both regimes match the regret lower bound up to a logarithmic factor. We believe

that the Lasso-RP-MNL algorithm is the first online assortment optimization algorithm in high-

dimensional settings to attain sub-logarithmic dependence on the feature dimension. We summarize

the theoretical bounds comparisons in Table 1.

At last, as our algorithm combines the Lasso and random projection to handle the high-

dimensional data challenges, this paper is also related to these two streams of literature. In high-

dimensional statistics, Lasso-type methods (Tibshirani 1996) have been proposed to explore the

high-dimensional data’s underlying latent sparse structure and become a standard approach for

high-dimensional feature selection and learning (Fan and Li 2001, Meinshausen et al. 2006, 2009,

Zhang et al. 2010, Loh and Wainwright 2013). For example, Belloni et al. (2013) study the OLS

post-Lasso estimator that first uses the Lasso for feature selection and then applies OLS for param-

eter estimation. The authors show that it performs strictly better than the Lasso and has the

advantage of a smaller bias, even when the feature selection misses some parameters of the true
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Table 1 Regret comparisons under data-rich regimes for the MNL model with the cardinality

constrain. T is the number of time/periods, d is the total number of features, s is the number of

significant features, N is the number of products, and K is the maximum assortment size.

Non-contextual MNL Upper bound Lower bound

Cheung and Simchi-Levi (2017a) Õ(N 1/3
√
KT )

Agrawal et al. (2017) Õ(K
√
NT )

Chen and Wang (2018) Ω(
√
NT/K)

Agrawal et al. (2019) Õ(
√
NT ) Ω(

√
NT/K)

Contextual MNL

Cheung and Simchi-Levi (2017b) Õ(dN
√
KT )

Chen et al. (2018) Õ(d
√
T ) Ω(d

√
T/K)

Ou et al. (2018) Õ(dK
√
T )

Oh and Iyengar (2019) Õ(d
√
T )

Oh and Iyengar (2021) Õ(d
√
T ) for UCB-MNL

High-dimensional
contextual MNL (this paper)

Data-poor regime Õ(s
√

logd ·T 2
3 ) by Theorem 5 Ω(s

1
3T

2
3 ) by Theorem 1

Data-rich regime Õ(s
√

logd ·
√
T ) by Corollary 2 Ω(

√
dT ) by Theorem 1

model (i.e., model misspecification). Lee et al. (2016) propose a general approach to valid confidence

intervals after model selection via the Lasso. Recently, Lasso-type methods have been introduced

to Bandit models and shown promising results (Bastani and Bayati 2020, Wang et al. 2018a, Kim

and Paik 2019, Hao et al. 2020, Oh et al. 2020). Our algorithm also periodically adopts the Lasso

for feature selection. Yet, the Lasso may suffer from model misspecification, especially under lim-

ited samples, and can be computationally challenging, therefore restraining these algorithms from

being implemented directly in online settings. Random projection (Johnson and Lindenstrauss

1984) has been proposed as a computationally efficient method to deal with high-dimensional data

(Fern and Brodley 2003, Pilanci and Wainwright 2015). Specifically, random projection is one of

matrix sketching methods (Matoušek 2008, Luo et al. 2016, Ghashami et al. 2016, Clarkson and

Woodruff 2017) that approximate a high-dimensional matrix by a more compact low-dimension

one with certain approximation guarantee. Therefore, the estimation for unknown parameters and

assessment of utilities can be completed in a low-dimensional fashion to significantly reduce the

computational complexity (Vershynin 2010) with acceptable accuracy loss. Yet, the distortion and

information loss intrinsic to random projection may lead to significant regret loss. In this work,

we combine random projection and the Lasso to limit the information loss and to curb model

misspecification, while maintaining the computational efficiency.
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3. Problem Statement and Regret Lower Bounds

Consider a sequential decision-making process: At each time t∈ {1,2, ..., T}, a single user/consumer

arrives, and the decision-maker then offers this user an assortment At from a candidate set contain-

ing Nt products indexed by 1,2, ...,Nt. The number of available products and the product candidate

set may change frequently over time, because some products may be sold out and unavailable in

the future, some new products can be added to the candidate set, or some products should be

excluded from certain user groups according to legal/managerial policies. Therefore, at different

times, the same product index may refer to different products. At each time, due to the cardinality

constrain (e.g., limited display capacity), the decision-maker can offer at most K products to the

user, |At| ≤K.

Users are heterogeneous, and the contextual information that characterizes Nt products and the

user arriving at time t – the user-product pair – are prescribed by feature vectors xt,1, xt,2, ..., xt,Nt ∈

R
d, which are drawn i.i.d. from some unknown distributions (Chen et al. 2018, Oh and Iyengar

2021). For simplicity, below, we suppress the time index t, as long as doing so does not cause any

misinterpretation. These feature vectors are high-dimensional and include rich contextual informa-

tion about the user, the product, and possible interactions between these two. The user’s utility

from choosing product i∈A with a feature vector xi is stochastic and follows the following linear

form:

Ui = xTi β
∗+ ζi, i∈A∪{0}, (1)

where β∗ ∈Rd is the unknown true parameter/coefficient vector for contextual information and

the unknown error term ζi follows a Gumbel distribution with location parameter 0 and scale

parameter 1. Note that we define U0 in Eq. (1) as the user’s utility from the no-purchase option,

which means that the user chooses not to pick any product from the assortment A and has a zero

feature vector (i.e., x0 = 0).

We consider the unknown true parameter vector β∗ to be s-sparse:

‖β∗‖0 =
d∑
i=1

1{β∗i 6= 0}= s.

This is because that the high-dimensional feature vector xi includes all the information available

to the decision-maker, but not all available features are equally valuable for predicting the user’s

utility and choice. For example, the user’s age, the product’s brand name, and the name of the

product’s distributor may all be available to the decision-maker and are included in the feature

vector; among these three features, the first two are typically more informative for assessing this

user’s utility and choice than the last one. Hence, in practice, the unknown true coefficient vector
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β∗ naturally exhibits a latent sparse structure. Let S∗ = {j : β∗j 6= 0} denote the true index set

for significant features (e.g., the user’s age and the product’s brand name), which have nonzero

coefficient values and are therefore important bases for the decision-maker’s predictions. Note that

the true index set S∗ and its cardinality s are unknown to the decision-maker at the beginning.

The decision-maker will earn non-negative rewards, depending on the user’s selection choice. In

particular, if the user chooses a product i from the offered assortment A, then the decision-maker

will collect a reward ri, which may take the form of click-through, gross merchandise volume,

commission revenue, etc. Without loss of generality, we normalize the decision-maker’s rewards

from the no-purchase option to be zero (i.e., r0 = 0). For an arbitrary assortment policy π= {At}t≥1,

where At is the assortment prescribed by policy π at time t, the decision-maker’s the expected

cumulative reward over T periods can be presented as follows:

T∑
t=1

∑
i∈At

Eζ [rt,i ·1(Ui >Uj for j ∈At ∪{0} \ {i})] ,

where 1(·) is the standard indicator function. Note that given the stochastic linear utility function

in Eq. (1), the probability that the user will choose product i from the given assortment A to

maximize her own utility, pβ∗,A(i), can be derived (see Anderson et al. 1992) and written as

pβ∗,A(i) :=Eζ [1(Ui >Uj for j ∈A∪{0} \ {i})] = ex
T
i β
∗
/(1 +

∑
j∈Ae

xTj β
∗
).

Following the MNL literature (McFadden et al. 1973), we will refer ex
T
i β
∗

to as the attraction

parameter for product i. Note that the true coefficient vector β∗ is unknown to the decision-maker

at the beginning, so it is generally intractable to directly analyze the expected cumulative reward

equation. Instead, we benchmark the policy π to an oracle policy, where the decision-maker knows

the true coefficient vector β∗ and always picks the assortment that generates the highest expected

reward. Specifically, we define the decision-maker’s expected cumulative regret up to time T under

the policy π as

Regret(T ) =
T∑
t=1

 max
Ãt⊆{1,2,...,Nt}
|Ãt|≤K

∑
j∈Ãt

rt,jpβ∗,Ãt(j)

−∑
i∈At

rt,ipβ∗,At(i)

 , (2)

which is the difference between the expected reward under the oracle policy1 and that under the

current policy π. The decision-maker will explore to select the optimal policy π to minimize the

expected cumulative regret.

1 Since feature vectors and the candidate set can change over time, there may not exist a best set A∗ that maximizes
the expected reward in all rounds. Therefore, we use the round-wise optimal assortment (i.e., Ãt) to benchmark the
regret performance instead.
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Finally, to avoid trivial assortment decisions, we assume that the feature vector, the coefficient

vector, and the rewards are bounded so that the maximum reward is also upper-bounded. Formally,

we make the following technical assumption:

Assumption A.1 : There exist positive constants b, xmax, and Rmax ≥ 1 such that ‖β‖ ≤ b, ‖xi‖1 ≤

xmax, ri ∈ (0,Rmax] for any product i.

3.1. Regret Lower Bound for High-Dimensional Online Assortment Optimization
Problems

Before presenting the Lasso-RP-MNL algorithm, we first establish the information theoretical

regret lower bound, which applies to any possible dynamic assortment strategies, for the online

assortment optimization problems under high-dimensional data, stated in Eq. (2), as follows:

Theorem 1. For any policy π for the high-dimensional online assortment optimization problem

described in Eq. (2), there exists a product set and s-sparse coefficient vector such that

Regret(T )≥min
{
Cl1 · (s− 1)

1
3 ·T 2

3 ,Cl2 · d
1
2 ·T 1

2

}
,

where Cl1 = min

{
exp(−12)

96

(
cosh

(
1
3 (s−1)

1
3 T
− 1

3

)
+1

) , 1
288κ2

}
and Cl2 = min

{
1

96

(
cosh

(
1
3d

1
2 T
− 1

2

)
+1

) , (1−κ)+d
− 1

2 T
1
2

288d(s−1)−1κ2

}
.

Note that conditioning on the sample availability and dimensions, the regret lower bound can be

further simplified. In particular, when d≥ (s−1)2/3C2
l1T

1/3/C2
l2, or equivalently T ≤C6

l2d
3/(C6

l1(s−

1)2), the regret is lower bounded by Ω(T
2
3 ), which suggests that under high-dimensional settings

with limit samples, the regret lower bound is inevitably higher than the conventional Ω(T
1
2 ) regret

lower bound derived in the literature for low-dimensional problems. Only as the number of samples

T increases, the regret lower bound can be improved to recover the standard Ω(T
1
2 ). In the next

section, we will show that the proposed Lasso-RP-MNL algorithm matches the Ω(T
2
3 ) lower bound,

and then by considering the minimum signal strength on β∗, the regret upper bound can be

improved to match the Ω(T
1
2 ) lower bound in data-rich regimes.

4. The Lasso-RP-MNL Algorithm

In the section, we describe the Lasso-RP-MNL algorithm and establish its regret performance. We

start with the learning and estimation of the unknown coefficient β∗ using the Lasso and random

projection. Specifically, §4.1 discusses the process of thresholding the Lasso estimator to learn the

significant feature set S∗ and demonstrates that this method can asymptotically recover significant

features with high probability. §4.2 constructs the permutation matrix and the projection matrix

to reduce the high-dimensional estimation problem into a low-dimensional space and shows that

the coefficient vector under the proposed permutation and projection is nearly invariant. Moreover,

we demonstrate that using the Lasso for feature selection will limit the negative influence of the
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information loss that is intrinsic to random projection and that random projection can in turn

alleviate the negative influence of possible model misspecification in the Lasso due to limited

samples. Next, in §4.3, we construct the upper-confidence bound for each individual product’s

utility, identify the optimistic assortment by solving a reformulated linear programming problem,

and establish the single-period regret upper bound for this optimistic assortment. Finally, in §4.4

and §4.5, we formally present the Lasso-RP-MNL algorithm and derive its expected cumulative

regret upper bounds.

4.1. The Lasso and Feature Selection

Denote the observed users’ choices, in response to assortments {A1,A2, ...,AT} up to time T , as

{c1, c2, ..., cT}. We denote the index set for whole samples as W. Further, we use WR to denote the

index set for random samples; that is, for t∈WR, the decision-maker randomly selects K products

from the product candidate set and offers to the user arriving at time t. Note that besides random

samples, W also includes non-random samples, in which the decision-maker selects assortments to

maximize his revenue performance, and therefore we haveWR ⊂W. In §4.4, we detail the mechanics

of how these random samples are generated via the random decay sampling schedule. Let nT denote

the size of the nonempty index set WR, i.e., nT = |WR|> 0. The Lasso estimator for the unknown

coefficient vector β∗ can be defined as follows:

β̂=arg min
β
L(β) +λ‖β‖1, where L(β) :=

1

nT

∑
t∈WR

log (pβ,At(ct)) . (3)

The λ in Eq. (3) is a positive regularization parameter and decreases in the random sample size

nT .

Compared to the standard maximum likelihood estimator, the Lasso estimator in Eq. (3) intro-

duces a `1 penalty term, λ‖β‖1, to retain significant features with nonzero coefficients while pushing

coefficients of insignificant features towards zero. Note that the Lasso estimator is identified in Eq.

(3) merely by using random samples in the index setWR, but not by using all samples W observed

up to time T . This is because that these random samples preserve the iid property necessary for

the desired asymptotic performance of the Lasso estimator.

To ensure the identifiability of the Lasso estimator in Eq. (3), we need the following compatibility

condition for L(β) that is constructed on the random samples set WR:

Assumption A.2 : There exists a κ> 0 such that for all vector u with 3‖uS‖1 ≥ ‖uSc‖1 and |S| ≤ s,

we have E [uT∇2L(ξ)u]≥ κ
s
‖uS‖21, where ξ is any feasible solution and L(ξ) is defined in Eq. (3)

by using only random samples collected in WR.

The Assumption A.2 is analogy to the standard technical assumption in the Lasso literature

(Candes et al. 2007, Bickel et al. 2009, Bühlmann and Van De Geer 2011) and high-dimensional
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bandit literature (Bastani and Bayati 2020, Wang et al. 2018a, Kim and Paik 2019). This assump-

tion regulates the covariance matrix’s behavior in a restricted region and is necessary to ensure that

the Lasso estimator asymptotically converges to its true value with high probability. It is worth

noting that L(β) is constructed by using only random samples in WR, but not on all samples W
up to time T . Therefore, this Assumption A.2 merely asks random samples to be diverse, but not

necessarily for all assortments.

Now, we can show that the Lasso estimator defined in Eq. (3) satisfies the following inequality:

Lemma 1. Set the parameter λ = 2
√

2x2
max(logd+ logT )/nT . Under Assumptions A.1-A.2,

when nT ≥ O(s2 logT ), the event Elasso(T ) :=
{
‖β̂−β∗‖1 ≤Classo · s

√
logd+logT

nT
:= G0(T, s)

}
holds

with probability 1−O(1/T ), where Classo = 48
√

2xmax
K(K−1)κ

.

In a nutshell, Lemma 1 demonstrates that when the random sample size nT is large enough, the

Lasso estimator β̂ will be close to the true feature coefficient β∗ with high probability. Moreover,

it is directly to show that as the random sample size nT increases, G0(T, s) decreases towards 0,

which suggests that the Lasso estimator asymptotically converges to its true value.

Recall that through introducing the `1 penalty term, the Lasso method can perform feature

selection by identifying potentially significant features. In particular, we can threshold the Lasso

estimate by only keeping dimensions whose estimated coefficient values |β̂j| exceed the threshold

value h(T ):

Theorem 2. Let h(T ) be a non-negative function of T and the thresholded index set S := {j :

|β̂j| ≥ h(T )}. Under the event Elasso(T ), we have (i) |β∗j | ≤ h(T ) + G0(T, s) for all j /∈ S, and (ii)

|S| ≤ s+G0(T )/h(T ).

The first part of Theorem 2 demonstrates that when the feature j is not in the thresholded index

set for significant features (i.e., j /∈ S), then its underlying true coefficient value β∗j will be small. In

other words, features outside of the thresholded index set S will have little influence on the user’s

utility and choice probabilities, regardless of whether this feature is actually a significant feature,

j ∈ S∗, or an insignificant feature, j /∈ S∗. Further, note that G0(T, s) decreases in the random

sample size nT . Hence, if we choose h(T ) to also be decreasing function of nT , then the influence

of unselected features can be controlled by the random sample size.

The second part of Theorem 2 reveals that the thresholded index set for significant features

identified by thresholding the Lasso estimator can be upper bounded. In fact, we can view h(T )

as the controlling parameter to balance the trade-off between the computation efficiency and the

selection bias. By setting a large h(T ), we lower the selected dimension S, which reduces the

computational cost. However, lowering the selected dimension will hurts the regret performance,

as more significant dimensions might be dropped from the thresholded index set S.
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4.2. Random Projection and Coefficient Estimation

If the decision-maker relies merely on features in the thresholded index set to assess users’ utilities

and choices, then he can reduce the original high-dimensional parameter estimation problem to a

low-dimensional one by ignoring all features outside of the thresholded index set S. Yet, without

sufficient random samples, the Lasso may erroneously include insignificant features and exclude

some significant features in the underlying true model, which causes the model misspecification

problem. As many significant features/information will be hidden outside of the thresholded index

set S, ignoring these details will lead to a suboptimal assortment selection, lowering the decision-

maker’s reward. However, estimating coefficients for all features outside of the thresholded index

set S will still be time-consuming, because these features remain high-dimensional. Therefore, to

recycle information contained in these features, we propose reducing the dimensionality of these

features to a low-dimensional space via random projection and then estimating coefficients for

features in both the index set S and the projected low-dimensional space.

In a nutshell, random projection achieves dimension reduction by multiplying the original high-

dimensional matrix by a random projection matrix, resulting a low-dimensional subspace with the

same number of samples but fewer projected features. The Johnson-Lindenstrauss Lemma (Johnson

and Lindenstrauss 1984) shows that the distance among points under the original high-dimensional

space can be largely preserved under the projected low-dimensional space with high probability,

and many theoretical studies and empirical applications have demonstrated the value of random

projection as a computationally efficient method for dimension reduction (Pilanci and Wainwright

2015). In this study, we will project high-dimensional (d− |S|) features outside of the thresholded

index set S into a low-dimensional m projected features by multiplying a random projection matrix

P ∈Rm×(d−|S|).

There are two popular choices for the random projection matrix P in the literature: Gaussian

random projection matrix and sparse random projection matrix. In Gaussian random projection

matrix, each entry Pi,j is i.i.d. distributed and follows Gaussian distribution N(0,1/m), whereas in

spare random projection matrix, entries take values {−
√
v,0,
√
v} with probabilities {1/(2v),1−

1/v,1/(2v)}, where v > 1 is a parameter selected by the decision-maker. Clearly, increasing v

decreases the number of nonzero elements in spare random projection matrix – the projection

matrix becomes sparser. Therefore, spare random projection matrix is faster to generate, manip-

ulate, and store than Gaussian random projection matrix. Yet, projecting high-dimensional data

into a low-dimensional space will inevitably result in information loss (e.g., the Euclidean distance

under the original high-dimensional space may not be precisely preserved under the projected low-

dimensional space), so the cost of choosing sparse random projection is additional information loss
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in preserving the pairwise distances (Li et al. 2006). In this research, we focus on Gaussian random

projection matrix for a tighter theoretical regret bound.

First, we can bound the distance between the original high-dimensional vector and the projected

low-dimensional vector with a certain probability guarantee.

Lemma 2. [Norm preservation] Let P = (pij) be a random d×m matrix such that each entry

pij is chosen independently according to N(0,1/m). For every vector u ∈Rd and ε ∈ (0,1/2], the

event Erp(m,d, ε) := {|‖Pu‖22−‖u‖22| ≤ ε‖u‖22} holds with probability 1− 2exp(−ε2m/8).

Lemma 2 demonstrates that Gaussian random projection can largely preserve the geometry

structure of the original vector with reasonable distortions with high probability. Hence, by adopt-

ing random projection techniques, the decision-maker can significantly reduce the computational

time without much sacrifice to the accuracy of parameter estimation. Yet, distortions or infor-

mation loss in the process of projecting high-dimensional data to a low-dimensional space could

lead to a worse regret performance, because such distortions do not vanish over time (Kuzborskij

et al. 2018). To limit the negative influence of information loss in random projection, we propose

combining random projection with the Lasso.

Recall that as the random sample size increases, the Lasso can learn and gradually identify

significant features by the thresholded index set S (Theorem 2). When the random sample size is

large enough, most useful information will already be contained within these features identified by

thresholding the Lasso. Therefore, the Lasso-RP-MNL algorithm will only project high-dimensional

features outside of the thresholded index set S to a low-dimensional space and then estimate

coefficients for features in both the thresholded index set S and the projected space. Therefore, the

long-term information loss (due to random projection) will be limited by the Lasso, and the negative

influence of model misspecification (due to the Lasso under limited samples) can be mitigated by

recycling features outside of the thresholded index set S via random projection.

Now, given an thresholded index set S, we describe the process of constructing the projection

matrix P0 and the permutation matrix Q. Through these two matrices, the decision-maker can

keep features in the index set S unchanged while randomly projecting the remaining (d − |S|)

features to a lower m dimensions. To this end, we first need to generate a random projection matrix

P ∈Rm×(d−|S|), where Pi,j follows Gaussian distribution N(0,1/m). Then, combining the random

projection matrix P with an identity matrix I ∈R|S|×|S|, we can construct the projection matrix

P0 =

(
I 0
0 P

)
∈R(|S|+m)×d. Next, we use Q∈Rd×d to denote the permutation matrix, which moves

the original feature vector x’s significant features in the index set S to the top |S| places in the

permuted feature vector Qx. Hence, by multiplying the projection matrix P0 by the permuted

feature vector Qx, we project the original d dimensional vector to a low-dimensional (|S|+m)
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vector, in which the first |S| elements are original features in the thresholded index set S identified

by the Lasso and the remaining m elements are the projected features by projecting the original

features not in the thresholded index set S via the random projection matrix P . For simplicity of

notation, we define z as the projected feature vector, z := P0Qx. Similarly, the following notations

are used throughout this paper: θ∗ := P0Qβ
∗ and Σ :=QTP T

0 P0Q.

Theorem 3. Let matrix P0 and Q be constructed by the thresholded index

set S := {j : |β̂j| ≥ h(T )}. When event Elasso(T ) holds, the event E2(m,T, ε) :=

{‖β∗−Σβ∗‖2 ≤ ε
√
s · (h(T ) +G0(T, s)) := G1(m,T, ε)} holds with probability 1− 4exp

(
−m

8
ε2
)
.

Theorem 3 demonstrates that the true feature coefficient vector β∗ is nearly invariant under the

projection Σ, which directly suggests that our proposed projection scheme is nearly optimal in

the sense that it will not introduce estimation error when predicting users’ utilities and choices

asymptotically. Specifically, consider projecting both the feature vector x and the coefficient vector

β∗ by using P0 and Q. Then, the projected utility can be written as (P0Qx)TP0Qβ
∗ = xTΣβ∗. Note

that as illustrated in Theorem 3, the time dependence of the term ‖(I −Σ)β∗‖ is on the order of

n
−1/2
T log3/2 T . Therefore, if we can ensure that the random sample size nT is on the order of at

least O(T c) up to time T (to be detailed in §4.4), where c is an arbitrary positive constant, then

‖(I −Σ)β∗‖ will converge to 0 with high probability.

By combining the Lasso and random projection, the decision-maker can project the original high-

dimensional d features into a low-dimensional (|S|+m) space so that the parameter estimation

can be performed in a low-dimensional fashion. Specifically, we estimate the coefficients for the

projected feature vector z = P0Qx as follows:

θ̂= arg min
‖θ−θ0‖≤τ

Lz(θ), where Lz(θ) :=
1

T

T∑
t=1

log

(
ez
T
ct
θ/

(
1 +

∑
i∈At

ez
T
i θ

))
. (4)

The τ in Eq. 4 is a positive constant selected by the decision-maker and θ0 = arg minθ ‖θ−P0Qβ̂‖.

The ‖θ− θ0‖ ≤ τ is a local constraint added in Eq. (4) to prevent over-fitting, and we solve θ̂ only

in the local space around θ0. Because from Lemma 1, we know that β̂ will not be far away from

β∗, it implies that θ̂ is also close to P0Qβ
∗ with high probability.

Similarly to Assumption A.2, which ensures the identifiability of the Lasso estimator in Eq. (3)

under the original high-dimensional space, we need the last technical assumption, which requires Lz

to be strongly convex under the projected space for random samples, to achieve the identifiability

of the estimator θ̂ in Eq. (4) under the projected space:

Assumption A.3 : When all samples in Lz(θ) are i.i.d. random samples, there exists a µ > 0 such

that for any v and feasible solution ξ in the projected space, we have E [vT∇2Lz(ξ)v]≥ µ‖v‖2.
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4.3. Assortment Selection

In this subsection, using the estimated coefficient vector in the projected space, we construct the

upper-confidence bound for each individual product’s attraction parameter, identify the optimistic

assortment, and establishes the single-period regret upper bound for the optimistic assortment.

Given an arbitrary assortmentA, we denote the decision-maker’s expected reward for a coefficient

vector θ under the projected space as

RA(θ) =
∑
i∈A

rie
zTi θ

1 +
∑

j∈A e
zTj θ

.

The following Lemma establishes an upper bound on the expected reward difference between the

estimator θ̂ in Eq. (4) under the projected space and the projected true coefficient vector P0Qβ
∗:

Lemma 3. Denote fA(θ) = E[pΣβ∗,A(i) log(pQTPT0 θ,A
(i)/pΣβ∗,A(i))] and δ = ‖θ̂ − P0Qβ

∗‖. Let

L3, λmax, and ρ be positive constants such that for all t > 0 and feasible θ2, θ1, ξ, we have

‖∇2fAt(θ1)−∇2fAt(θ2)‖op ≤ L3‖θ1− θ2‖, ‖∇2RAt(ξ)‖op ≤ λmax, and minA,i∈A pβ∗,A(i)≥ ρ. Under

Assumption A.1 and A.3, if δ ≤ min{ nT µ
4TL3

, ρ
8Kxmax

}, G1(m,T, ε) ≤ ρ
8Kxmax

, and events E2(m,T, ε)

and Erp(m,d,1/2) hold for all products, then the following inequality holds for all assortment A

with probability 1− 4exp
(
−m

8
ε2
)
−O(1/T ):

|RA(θ̂)−RA(P0Qβ
∗)| ≤

√
2RmaxωT

√√√√√
∥∥∥∥∥∥
(

T∑
i=1

∇2fAi(θ̂)

)− 1
2

∇2fA(θ̂)

(
T∑
i=1

∇2fAi(θ̂)

)− 1
2

∥∥∥∥∥∥
op

+
1

2
λmaxδ

2,

(5)

where ωT = 4
√

4x2
maxTG1(m,T, ε)δ+ 32(2(|S|+m) + 1) log(T ) + 2ΓT and ΓT = max{0, TLz(θ̂)}.

The upper bound established in Lemma 3 has two components. The first term in the right-

hand-side of Eq. (5) is the typical UCB-type upper-confidence bound, whereas the additional

second term, λmaxδ
2/2, accounts for the possible influence of model misspecification and information

loss. In the classic setting, we assume that the true model always falls in the solution space so

that the estimator enjoys asymptotical unbiasedness. However, this assumption no longer holds

when the Lasso fails to identify all significant features and random projection is used to compress

all remaining high-dimensional features, potentially including true significant features. In such a

scenario, the decision-maker will face an upper bound worse than the typical UCB-type bound.

Yet, such negative influences of model misspecification and information loss should not be of much

concern for a large sample size. In particular, note that in Lemma 3, we require that δ converges

to zero at the rate of O(nT/T ), and therefore the additional second term λmaxδ
2/2 diminishes at

the rate of O(T−1/2), if we ensure nT = Õ(T 1/2) (see §4.4 for details), under which case the upper

bound established in Lemma 3 converges to the typical UCB-type bound.
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When the given assortment includes merely a single item, we can establish an upper bound for

each individual product’s attraction parameter. Specifically, consider a single-item assortment A

that contains a single product with the feature vector x and reward r = 1. The decision-maker’s

expected reward can be simplified to (ex
T β∗/(1 + ex

T β∗)), and the attraction parameter can be

upper bounded as in the following corollary.

Corollary 1. Let A be the assortment with a single item characterized by the feature vector x.

If the same conditions stated in Lemma 3 hold, then with probability 1− 4exp
(
−m

8
ε2
)
−O(1/T ),

we have ex
T β∗ ≤ vucb, where η= exp(xmaxb) and

vucb =exp(xTQTP T
0 θ̂) + ηxmaxG1(m,T, ε) +

λmax

2 + 2η2
δ2

+

√
2Rmaxωt
1 + η2

√√√√√
∥∥∥∥∥∥
(

T∑
i=1

∇2fAi(θ̂)

)−1/2

∇2fA(θ̂)

(
T∑
i=1

∇2fAi(θ̂)

)−1/2
∥∥∥∥∥∥
op

. (6)

This upper bound for the single product’s attraction parameter will facilitate the analysis of the

regret upper bound for the decision-maker’s “optimal” static assortment. In particular, given the

current estimator θ̂, in order to maximize his single-period expected reward, the decision-maker

needs to offer at most K products out of N candidates. Equivalently, the decision-maker solves the

following static assortment optimization problem under the cardinality constraint:

max
A⊆{1,2,...,N}
|A|≤K

{
RA

(
θ̂
)}

.

The key challenge in identifying the optimal assortment is that the decision-maker must search

through a combinatorial space of N products. In practice, the number of products can easily exceed

hundreds or thousands, which makes the problem computationally intractable for online assortment

optimization problems. Therefore, following Davis et al. (2013), we reformulate this combinatorial

optimization problem as a linear programming problem:

max
w

∑
i∈N

riwi, s.t.
∑
i∈N

wi +w0 = 1;
∑
i∈N

wi
vi
≤Kw0; 0≤wi ≤w0vi for i∈N. (7)

As at most K decision variables will be none-zero under the optimal solution, various efficient

solution algorithms, such as column-generation techniques, can be adopted to expedite the com-

putation for this LP problem. Now, we replace the product i’s attraction parameter vi in Eq. (7)

by vucbi and denote the optimal solution to the resulting problem as w∗. Then, we refer to the

assortment ASRP = {i ∈N : w∗i > 0} as the static assortment under random projection. It is also

worth noting that that the static assortment under random projection ASRP may not be the true

optimal assortment under the original high-dimensional space for two reasons: The projected space
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may not contain the true coefficients, where the systemic bias may appear, and the estimator θ̂

may not match the best possible candidate of the true coefficients in the projected space.

Now, we denote the decision-maker’s expected reward for a given assortment A under the true

coefficient β∗ in the original high-dimensional space as

Rβ∗(A) =
∑
i∈A

rie
xTi β

∗

1 +
∑

j∈A e
xTj β

∗ .

Further, we use A∗ to denote the optimal assortment, which can be identified by searching the

combinatorial space of all products to maximize Rβ∗(A), i.e., A∗ = arg maxA,|A|≤KRβ∗(A). Next,

we bound the expected reward difference between the static assortment under random projection

ASRP and the optimal assortment A∗ in the following theorem:

Theorem 4. Let ASRP be the static assortment under random projection and A∗ be the opti-

mal assortment. Under the same conditions as in Lemma 3, the following inequality holds with

probability 1−O(1/T ):

Rβ∗(A∗)−Rβ∗(ASRP )≤RmaxKηxmax(2δ+ 2G1(m,T, ε)) +
RmaxKλmax

2 + 2η2
δ2

+
R2

maxKη
3/2(1 +Kη)

√
2ωt

(1 + η2)(1 + η)

√√√√√
∥∥∥∥∥∥
(

T∑
i=1

∇2fAi(θ̂)

)−1/2

∇2fASRP (θ̂)

(
T∑
i=1

∇2fAi(θ̂)

)−1/2
∥∥∥∥∥∥
op

,

The upper regret bound for the static assortment under random projection ASRP can be divided

into two parts. On the one hand, the first part, RmaxKηxmax(2δ + 2G1(m,T, ε)) + RmaxKλmax
2+2η2 δ2,

comes from the single product utility decomposition. The magnitude of the first part of the upper-

confidence bound can be regulated by a judiciously designed random sample schedule. In particular,

for a small sample size, it is straightforward to show that G1(m,T, ε) = O(
√

logT/nT ) and δ =

O(nT/T ). Therefore, if we can design the random sample size nT to be on the order of at least

Õ(T 2/3), then the first part will be upper-bounded at most by the order Õ(T−1/3). On the other

hand, the second part is the typical UCB-type upper-confidence bound, which shares the typical

quadratic upper bound as in UCB-type algorithms and can be further bounded by the elliptical

potential lemma (see Dani et al. 2008, Rusmevichientong et al. 2010, Filippi et al. 2010, Li et al.

2017).

It is worth mentioning that the common K parameter in the right-hand-side stems from the

fact that we construct the product-based bound instead of the assortment-based bound. In partic-

ular, instead of enumerating all possible combinations (choose K out of N products) and building

confidence bounds for each combination (as in Chen et al. 2018), we construct confidence bounds

for each product (see Corollary 1) so that the estimation error will accumulate with respect to
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the assortment size K. Although constructing the product dependent bound instead of assortment

dependent bound results in additional cost, the decision-maker benefits from the significant reduc-

tion in computational time. For example, consider a scenario where the decision-maker selects 20

out of 1,000 products: Instead of constructing 3.4× 1041 confidence bounds for assortments, we

need to build only 103 confidence bounds – one confidence bound for each product. Hence, in prac-

tice, where the decision-maker typically faces a large product candidate set, our algorithm becomes

more efficient and pragmatic in online decision-making settings.

4.4. Lasso-RP-MNL Algorithm

Recall that the estimation accuracy and assortments’ regret bounds are contingent on the number

of random samples nT (see Theorem 2-4). Therefore, we need to design a sampling schedule that

generates sufficient, but not excessive, random samples:

Random Decay Sampling Schedule: At the beginning of each time t, the decision-maker

draws a random number rt that follows Bernoulli distribution with success probability P(rt =

1) = min{1,C0t
−c1} := PC0,c1(t), where C0 is selected by the decision-maker. If rt = 1, then the

decision-maker randomly selects K products as the assortment to the user arriving at time t.

Not that under the random decay sampling schedule, the random sampling probability PC0,c1(t)

decreases at the rate of t−c1 . Therefore, as time t increases, the probability of random samples

decreases towards zero. Hence, by controlling the sampling schedule, the decision-maker can gen-

erate enough random samples for proper estimation without sacrificing too much regret.

Now, we are ready to present the proposed Lasso-RP-MNL algorithm as follows:
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Algorithm : Lasso-RP-MNL Algorithm

Require: Input PC0,c1(t), h(t), m, λ0, and the Lasso step set Tlasso. Initialize t= 1,WR = ∅,W = ∅,

P0 ∈Rm×d with i.i.d N(0,1/m) Gaussian random elements, Q= I, θ0 = 0, {ωt}, and τ = +∞.

for t= 1,2, ... do

Draw a Bernoulli random number bt with success probability PC0,c1(t).

if bt = 1 then

1. Randomly select K products from the candidate set {1,2, ...,Nt} as the assortment At.

2. Observe the user’s choice ct ∈At ∪{0} and update WR =WR ∪{t} and W =W ∪{t}.

else

1. Solve Eq. (4) for θ̂ with samples in W and update attraction parameters’ upper bounds

vi = vucbi for i∈ {1,2, ...,Nt} according to Eq. (6).

2. Plug the updated vi back to Eq. (7), solve for w∗, and offer At = {i∈Nt :w∗i > 0}.

3. Observe the user’s choice ct ∈At ∪{0} and update W =W ∪{t}.

end if

if t∈ Tlasso then

Solve Eq. (3) for β̂ with samples in WR and λ= λ0

√
(logd+ log t)/|WR|; re-construct the

thresholded index set S, the projection matrix P0, and the permutation matrix Q; set

θ0 = arg min‖θ−P0Qβ̂‖ and τ = min{ ρ
8Kxmax

, ntµ
4tL3
}.

end if

end for

The Lasso-RP-MNL algorithm starts with assigning values for system parameters and initialing

intermediate matrices and variables. For a user arriving at time t, the decision-maker will follow

the random decay sampling schedule to draw a Bernoulli random number. If this random number

equals 1, then the decision-maker will randomly select K products from the product candidate

set, offer the resulting assortment to the user, observe the user’s choice, and finally include this

sample in both the random sample index set WR and the whole sample index set W. Otherwise, if

the Bernoulli random number equals 0, then the decision-maker will first estimate the coefficients

for the projected low-dimensional feature vector θ̂, based on which the decision-maker will update

the attraction parameters’ upper-confidence bounds for all products in the candidate set; next, the

decision-maker will treat these upper-confidence bounds as new attraction parameters in the MNL

model and plug them back into Eq. (7) to identify the assortment that maximizes his expected

reward; then, the decision-maker will offer this assortment to the user, observe the user’s choice,

and include this sample in the whole sample index set W only.
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Finally, before moving to the next user, the decision-maker will check whether the current time

t belongs to a predetermined Lasso step set Tlasso. If not, then the decision-maker does not need

to do anything and will move directly to the next user. Otherwise, if t ∈ Tlasso, then the decision-

maker will update the thresholded index set S via the Lasso using only random samples in the

index set WR, reconstruct the projection matrix P0 and the permutation matrix Q, recalculate the

local solution θ0, and then move to the next user.

The next theorem establishes the expected cumulative regret upper bound for the Lasso-RP-

MNL algorithm.

Theorem 5. Under Assumptions A1 − A3, if we set Tlasso = {ci, i = 0,1,2, ...} with a pos-

itive integer c > 1, h(t) = G0(T, ŝ) for a positive ŝ, C0 ≤ 1, c1 = 1/3, λ0 = 2
√

2xmax, m =

max{8ŝ logT,32 log(TN)}, and T ≥ (2 logT/(CC0))
3
2 . Then, with probability 1− T ŝ/s −O(T−1),

the expected cumulative regret of the Lasso-RP-MNL algorithm is upper bounded as follows:

Regret(T )≤
(
C̃f,1 (3s+ ŝ+m) + C̃f,2 + C̃f,3

√
(2s+m) + 2C0

)
T

2
3

. Õ
(
s
√

logd ·T 2
3

)
,

where C̃f,1 = Õ(
√

logd), C̃f,2 = Õ(1) and C̃f,3 = Õ(1).

From the regret lower bound established in Theorem 1, we can directly argue that the Lasso-RP-

MNL algorithm matches the regret lower bound in the sample size dimension T , up to a logarithmic

factor, in the data-poor regime (i.e., Ω(T
2
3 )). We want to highlight this result by comparing it to

the scenario where the decision-maker relies only on the Lasso to perform dimension reduction. In

particular, consider an auxiliary Lasso-only algorithm in which, keeping everything else unchanged,

the decision-maker estimates coefficients only for features thresholded by the Lasso and ignores

all remaining features. Under such an auxiliary Lasso-only algorithm, if the Lasso fails to fully

identify significant features in the data-poor regime, which is highly possible due to insufficient

random samples, then the decision-maker will rely on the misspecified model to perform coefficient

estimation and assortment selection. Under this scenario, the expected single-step regret will be

proportional to the strength of the model bias and can lead to a linear cumulative regret on T . The

Lasso-RP-MNL algorithm, however, estimates coefficients for two sets of features. The first set is

the |S| features by thresholding the Lasso estimator, and the second set is all remaining (d− |S|)

features projected down to m dimensions by random projection. Therefore, the negative influence

of model misspecification can be partially mitigated by recycling features in the second set, so we

can improve the cumulative regret’s dependence on time T from linear to sublinear, Õ(T
2
3 ).

Theorem 5 further shows that the Lasso-RP-MNL algorithm can improve the regret upper bound

on the feature dimension from a linear dependence in the literature (e.g., O(d) in Chen et al.
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2018, Oh and Iyengar 2019) to a sub-logarithmic dependence O(
√

logd). This improvement is of

particular importance for regret performance under high-dimensional settings, where the feature

dimension d is extremely large, and we believe that the Lasso-RP-MNL algorithm is the first

algorithm being able to reach the logarithmic bound on the feature dimension for assortment

optimization problems.

Remark 1. Note that the Lasso-RP-MNL algorithm runs the Lasso to update the index set S

only when the current time t belongs to the set Tlasso. This is because solving the Lasso problem

can be time-consuming, which makes it impractical to update the Lasso for every arriving user

under the online decision-making scenario. Hence, we construct a very sparse Lasso step set such

that the number of users between two consecutive Lasso runs increases exponentially by setting

Tlasso = {t : t = ci, i = 0,1,2, ...} with a positive integer c > 1. Therefore, as time progresses, the

frequency of updating the Lasso decreases at an exponential rate, which alleviates the computa-

tional burden associated with solving the Lasso under high-dimensional data with large sample

sizes, while maintaining proper accuracy for parameter estimation.

Remark 2. The algorithm does not assume any knowledge of the true value for the significant

dimension s. Yet, for better empirical performance, we tend to select ŝ in Theorem 5 to be suffi-

ciently large so that it will be larger than s, i.e., ŝ≥ s, under which case we can get rid of the T ŝ/s

term and have the probability to be 1−O(T−1). In practice, the decision-maker typically relies

on experts’ opinions or from previous offline data to have a rough guess on s and then to set ŝ to

upper bound that value. If, however, ŝ is picked to be smaller than s, then in order to get rid of

the T ŝ/s term, there will be one additional O(s
1
2 ) term in the regret upper bound, which can be

derived by setting ε=O(1) in Eq. (EC.65) and used the same proof procedure of Theorem 5. In

addition, it is also possible to follow Oh et al. (2020) to design an algorithm without any knowledge

of s and without the need for random sampling by introducing the relaxed symmetry assumption,

and we will leave such consideration for future exploration.

4.5. Improved Upper Bound

Next, we show that the Lasso-RP-MNL algorithm’s regret upper bound can be further sharpen

to Õ(T
1
2 ) in the data-rich regime. Let’s denote βmin = minj∈S∗ |β∗j | as how the significant signal is

bound away from zero (i.e., the minimum signal strength), and intuitively, the feature selection by

thresholding the Lasso estimator will be much easier under a large βmin value. In theorem 2, we

show that for j /∈ S, we have |β∗j | ≤ h(T ) + G0(T, s). Hence, if we set h(T ) = G0(T, ŝ), then for a

large T , the term h(T ) + G0(T, s) becomes smaller than βmin, which implies that features outside

of the thresholded index set S are actually insignificant features. In this case, the projection will

not introduce any distortion, i.e., ‖β∗−Σβ∗‖2 = 0. As a result, the high-dimensional problem can
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be reduced to the conventional low dimensional setting, and the regret upper bound derived in

Theorem 5 can be improved to Õ(T
1
2 ), which is formally summarized in the following corollary.

Corollary 2. Under the same conditions as in Theorem 5 and set c1 = 1/2, when T &

O((s2 logd(βmin)−2)2), the expected cumulative regret for the Lasso-RP-MNL algorithm is upper

bounded as follows:

Regret(T ). Õ
(
s
√

logd ·T 1
2

)
.

5. Empirical Experiments

In this section, we benchmark the Lasso-RP-MNL algorithm to existing state-of-the-art algorithms

in the literature and industrial practices. In §5.1, we first explore the benefits of the Lasso-RP-

MNL algorithm by comparing it to four benchmarks to illustrate the value of the high-dimensional

contextual information and the value of dimension reduction techniques. In §5.2, we simulate the

real practice environment, where users are heterogeneous, the product candidate set is large, and the

feature vector is high-dimensional, to examine the impacts of the size of the product candidate set

N , the feature dimension d, and the projection dimension m on Lasso-RP-MNL’s cumulative regret

performance and computational time. Finally, in §5.3, we use the high-dimensional XianYu online

assortment recommendation dataset to evaluate the Lasso-RP-MNL algorithm’s performance in a

real practice scenario, where the technical assumptions specified early may not hold.

5.1. The Benefits of Lasso-RP-MNL: A Preliminary Illustration

The benefits of the Lasso-RP-MNL algorithm can be justified by two key factors: incorporating

high-dimensional contextual information and combining two dimension reduction techniques (i.e.,

the Lasso and random projection). Hence, to separately gauge the impacts of these two factors, we

consider four benchmark algorithms in the first synthetic experiment, as follows:

• MNL-Bandit : Proposed by Agrawal et al. (2019), MNL-Bandit is a UCB-based algorithm

without the contextual information.

• Benchmark 1 (With Features): Benchmark 1 follows the same structure as the Lasso-RP-MNL

algorithm, but without using the Lasso and random projection; this benchmark estimates the

unknown coefficient vector β∗ under the original high-dimensional space.

• Benchmark 2 (RP Only): Benchmark 2 follows the same structure as the Lasso-RP-MNL

algorithm, but it does not update the thresholded index set via the Lasso (i.e., S ≡ ∅); instead, it

projects all features into a low m-dimensional space via random projection.

• Benchmark 3 (Lasso Only): Benchmark 3 follows the same structure as the Lasso-RP-MNL

algorithm, but it estimates coefficients only for features in the thresholded index set S and ignores

all remaining features outside of S.
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Note that MNL-Bandit does not use high-dimensional contextual information to estimate each

user-product pair’s utility. Instead, it assigns a unique attraction parameter for each product and

directly estimates these attraction parameters using the sample average (see Agrawal et al. 2019).

Therefore, comparing Benchmark 1 to MNL-Bandit2 could shed light on the value of incorporating

the contextual information. By comparing Benchmark 2 and Benchmark 3 to Benchmark 1, we can

separately assess the benefits of the Lasso and random projection under the high-dimensional online

assortment optimization setting. Finally, we compare the Lasso-RP-MNL algorithm to Benchmark

2 and Benchmark 3 to gauge the benefits of combining the Lasso and random projection.

5.1.1. Data Generation and Parameter Inputs: In the first experiment, we consider

that a decision-maker needs to offer at most 5 products (i.e., K = 5) out of a candidate set of

20 products (i.e., N = 20) to users. The unknown true coefficient vector β∗ is sparse, and only 5

out of a total of 20 coefficients are non-zero (i.e., d = 20 and s = 5). Without loss of generality,

we set the first five features to be significant (i.e., β∗ = {β∗1 , β∗2 , β∗3 , β∗4 , β∗5 ,0,0, ...,0}), and their

values are also independently and identically generated by a Gaussian distribution. Finally, the

corresponding reward ri for i = {1,2, ...,20} is generated from a uniform distribution from 0 to

1. In the experiment, we arbitrarily set the parameters λ0 = 1, C0 = 3, c = 2 and the projection

dimension m= 3.

Note that MNL-Bandit can not be directly applied to our setting with heterogeneous users and

changing product candidate sets. This is because that the learning in MNL-Bandit is associated

with the attraction parameter for each product. Therefore, to learn these attraction parameters,

MNL-Bandit requires that the number of products is not too large and the true values of these

attraction parameters remain unchanged in the experiment. Hence, to benchmark against MNL-

Bandit, we will consider a setting where feature vectors xi for i= {1,2, ...,N} contain only product

features, and the same group of feature vectors is repetitively offered to the decision-maker. In other

words, in the first experiment, the decision-maker will repetitively choose from a fix set of 20 prod-

ucts to a group of T homogeneous users. Technically, we generate feature vectors xi for 20 products

once at the beginning of the experiment, which are independently and identically generated from

the standard Gaussian distribution, and offer these 20 products repetitively to the decision-maker

for every incoming user. This constrain will be relaxed in other synthetic experiments in §5.2 and

the XianYu experiment in §5.3.

2 Besides Benchmark 1, MLE-UCB by Chen et al. (2018) can also be used to illustrate the value of contextual
information. Yet, as MLE-UCB does not use dimension reduction techniques for learning and relies on computing
individual assortment bounds to identify the optimal assortment, it is highly computational expensive and therefore
is unsuitable for online assortment optimization under high-dimensional data.



25

5.1.2. Results: For each algorithm, we perform 100 trials and report the average cumulative

regret in Figure 1 for the first 1,000 users (i.e., T = 1,000), at which time all algorithms, except

Benchmark 2, seem to have converged. The average computational time (in seconds) for one trial

is 11 for MNL-Bandit, 53 for Benchmark 1, 26 for Benchmark 2, 25 for Benchmark 3, and 33

for Lasso-RP-MNL. Recall that MNL-Bandit uses the sample mean to update its estimators for

unknown attraction parameters instead of adopting MLE in all other algorithms. Therefore, MNL-

Bandit tends to have better computational time performance, when the number of products in the

candidate set N is not large. Without using any dimension reduction techniques, Benchmark 1

requires the longest computational time among all algorithms.
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Figure 1 The impact of T on the cumulative regret, where d= 20, s= 5, N = 20, K = 5, and m= 3.

Figure 1 illustrates the cumulative regret performance (with 90% confidence interval error bars)

for all algorithms. First, when comparing Benchmark 1 to MNL-Bandit, we observe that algorithms

using available contextual information could significantly improve the decision-maker’s regret per-

formance. Second, note that as the underlying data possess a sparse structure, the decision-maker

could use the Lasso (in Benchmark 3) to perform feature selection, identify the underlying sparse

data structure, and improve the accuracy of parameter estimation. Indeed, we observe that with

the Lasso, Benchmark 3 further reduces the decision-maker’s cumulative regret from Benchmark 1.

Third, the Lasso may suffer from model misspecification, especially with limited samples, leading

to inaccurate assessment of users’ utilities and suboptimal assortment recommendations. Hence,

by adding random projection to Benchmark 3 so that features outside the thresholded feature set

can be recycled and reused to improve users’ utility assessment, Lasso-RP-MNL performs the best

among all algorithms.
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Finally, it is worth mentioning that Benchmark 2 seems to perform well at the beginning but fails

to converge in the experiment. Specifically, we first observe that Benchmark 2 performs exception-

ally well under very limited samples. To explain, note that with limited samples, estimating a large

number of parameters will inevitably lead to high variances and poor estimates. Hence, by pro-

jecting high-dimensional data into a lower dimension, Benchmark 2 could significantly reduce the

number of parameters that are needed to be estimated and improve the estimation accuracy, which

in turn enables better assortment recommendations. However, Benchmark 2 suffers from informa-

tion loss in the process of projecting high-dimensional data into a low-dimensional space, which

cannot be corrected asymptotically. Hence, as the sample size T increases, the cumulative regret

of Benchmark 2 will eventually exceed Benchmark 3, Benchmark 1, and MNL-Bandit sequentially.

5.2. The Impacts of N , d, and m on Lasso-RP-MNL

In this subsection, we examine the influences of the number of products in the candidate set N ,

the feature dimension d, and the projection dimension m. Recall that in the first experiment in

§5.1, we consider homogeneous users and restrict the product candidate set to be small and remain

unchanged for all users so that MNL-Bandit can be included as a benchmark to illustrate the value

of contextual information. In this subsection, however, we simulate a real practice environment,

where the decision-maker faces heterogeneous users and available products can be innumerable and

change from user to user.

To this end, we largely follow the data generation and parameter inputs discussed in §5.1,

except for the process of generating the feature vectors for user-product pairs. In particular, for

each arriving user, we will regenerate the feature vectors for N user-product pairs (i.e., xi for

i= {1,2, ...,N}) by independently and identically drawing them from a Gaussian distribution. Here,

the changes in user-product pairs reflect the changes in both users’ features (i.e., heterogeneous

users) and products’ features (i.e., a different product candidate set). With heterogeneous users

and changing product candidate sets, we will benchmark the Lasso-RP-MNL algorithm against

Benchmarks 1, 2, and 3 in the following three synthetic experiments.

5.2.1. Impact of the size of the product candidate set N : To examine the impact

of the number of products in the candidate set, we vary N = {10,50,100,500} while keeping

parameters s= 5, d= 50, K = 5, and m= 5 unchanged. For different values of N , the Lasso-RP-

MNL algorithm always converges before 500 users, so we present the cumulative regret performance

and the computational time for Lasso-RP-MNL and Benchmarks 1, 2, and 3 at time T = 500.

Figure 2(a) suggests that the cumulative regret for all algorithms seems to increase in the num-

ber of products in N . But, among all algorithms, Lasso-RP-MNL has the the lowest cumulative
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Figure 2 The impact of N on the cumulative regret and the computational time, where T = 500 s = 5, d = 50,

K = 5, and m = 5.
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(b) Average computational time per trial

regret, which also tends to grow at the slowest pace. We also observe that algorithms with dimen-

sion reduction techniques (i.e., Benchmark 2, Benchmark 3, and Lasso-RP-MNL) are much more

computationally efficient compared to the algorithm without such techniques (i.e., Benchmark 1).

Specifically, Figure 2(b) presents the influence of N on the average computational time per trial

in seconds. Using the Lasso and/or random projection as dimension reduction techniques could

significantly scales down the computational time for estimating parameters and calculating users’

utilities for all products, and therefore Benchmark 2, Benchmark 3, and Lasso-RP-MNL perform

much better than Benchmark 1, regardless of the size of the candidate set.

5.2.2. Impact of the feature dimension d: Next, we examine the influence of the feature

dimension by varying d= {100,1000,5000,10000} while keeping parameters s= 5, N = 100, K = 5,

and m = 5 unchanged. Similarly to the second synthetic experiment, we report the cumulative

regret and computational time for Lasso-RP-MNL, Benchmark 1, 2, and 3 at T = 500 in Figure 3.

We first observe that compared to other algorithms, Benchmark 1’s cumulative regret and com-

putational time grow dramatically and rapidly out of the chart, as the feature dimension d exceeds

100 in the experiment3. This is as expected. When we expand the feature dimension without using

any dimension reduction techniques, Benchmark 1 will require a larger number of available samples

to achieve reasonable estimation accuracy. Yet, as we increase the feature dimension while keeping

the sample size unchanged at T = 500, the regret performance of Benchmark 1 inevitably suffers.

Further, note that Benchmark 1 will need to estimate coefficients for all features. Consequently, as

the feature dimension increases, its computational time surges.

3 In our experiments, when the feature dimension d equals 1,000, the computational time for a single trial of Bench-
mark 1 will easily exceed one hour. We therefore only plot Benchmark 1’s results for d = 100 in Figure 3.
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Figure 3 The impact of d on the cumulative regret and the computational time, where T = 500 s = 5, N = 100,

K = 5, and m = 5.
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Adopting dimension reduction techniques, Lasso-RP-MNL and the remaining two benchmarks

have much lower cumulative regret performance, compared to Benchmark 1. Furthermore, as the

feature dimension d increases, the cumulative regret for these three algorithms grows. Similarly

to previous experiments, Lasso-RP-MNL continues to have the lowest regret performance, and

Benchmark 3 performs better than Benchmark 2. From the computational time’s perspective,

Benchmark 2, Benchmark 3, and Lasso-RP-MNL all seem to be computationally efficient, while

Benchmark 2 maintains a slight advantage over Benchmark 3 and Lasso-RP-MNL.

5.2.3. Impact of the Projection Dimension m: In the final synthetic data experiment, we

explore the influences of the projection dimension by varying m= {1,2,3,4,5,10,20,50,100,200}
and keeping parameters d= 200, s= 5, N = 30, and K = 5 unchanged. The cumulative regret and

computational time for Lasso-RP-MNL at T = 500 are presented in Figure 4. As expected, we first

observe that the computational time for Lasso-RP-MNL increases in the projection dimension m.

The cumulative regret of Lasso-RP-MNL, however, exhibits an unimodal property with respect

to the projection dimension m in our experiment. In all experiments, we observe that the projection

dimension that minimizes the cumulative regret is typically fairly small compared to the feature

dimension. In fact, we can show that if the projection dimension m is chosen to be on the order of

O(logd), then the Gaussian random projection can be confined to a fixed distortion (see the proof

of Lemma 2). In Figure 4, for the feature dimension of 200, we merely need to set the projection

dimension to be 3 to minimize Lasso-RP-MNL’s cumulative regret performance.

5.3. XianYu Assortment Recommendation Experiment

In the last experiment, we consider a high-dimensional assortment recommendation problem faced

by XianYu in practice. To ensure that our experiment is manageable for a single PC, we trimmed
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Figure 4 The impact of m on the cumulative regret and the computational time, where d= 200, s= 5,

N = 30, K = 5, and T = 500.

the original XianYu dataset, which consists of more than 2 billion features for the user-product

pair from 4 million samples (e.g., assortments offered to users and their corresponding responses),

to include only 10 thousands features4 that appear with the highest frequency in these samples.

In practice, for each arriving user, XianYu will first pre-select a personalized product candidate

set. Typically, to offer an assortment for an arriving user, there are approximately more than 1

billion available products for XianYu to choose from. However, assessing the user’s utilities for all

available products to identify the optimal assortment is computationally infeasible under the online

setting, where the user expects less than half a second delay. Therefore, depending on the arriving

user’s specific characteristics (such as searching keywords, current browsing page, demographics,

etc.), XianYu will first pre-select 1,000 highly correlated products from all available products using

its efficient recall mechanisms. Then, XianYu’s assortment optimization algorithm – the Top-K

algorithm – will pick 20 products from the pre-selected 1,000 products and offer them to the user.

In this experiment, we include XianYu’s Top-K algorithm as another benchmark algorithm.

The Top-K algorithm is a hybrid online-offline algorithm: The assessment for each user’s choice

probability and the assortment optimization are performed online, but the parameter estimation

and updating are done offline. In the Top-K algorithm, XianYu treats each product in an assortment

separately and uses logistic regression to individually assess the user’s selection probability for

each product. Specifically, for each arriving user, XianYu will first assess this user’s selection

probabilities, based on the user-product feature pair via logistic regression, for all products in the

pre-selected candidate set of 1,000 products, then calculate the user’s expected reward for these

products separately, and finally offer the top K = 20 products with the highest expected reward

as the assortment to this user. In practice, XianYu periodically (typically every couple of hours)

4 We could extend the experiment to include more features, but doing so would not qualitatively change our results
and insights but would considerably increase the computational burden.
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updates its estimates for unknown coefficients in the logistic regression via the maximum likelihood

estimation. In our experiment, we allow XianYu to update its coefficients at a more frequent rate

(i.e., at the same frequency as the Lasso updates in the Lasso-RP-MNL algorithm).

At XianYu, the 1,000 pre-selected products vary significantly from user to user. Therefore, to

simulate such a dynamic environment in the experiment, for each arriving user, we randomly select

1,000 products from the candidate set of 20,000 high-frequency products in the dataset and then

use different assortment optimization algorithms to select 20 products for the user. Finally, we use

the actual asking prices for these products as the reward that XianYu will receive when a user

clicks/buys a recommended product. The underlying user’s choice model is estimated using the

original untrimmed dataset.

In this experiment, we assess the lost revenue under Benchmark 2, Benchmark 3, Lasso-RP-

MNL, and the Top-K algorithm by comparing them to an oracle policy. Note that we are unable

to include Benchmark 1 in this experiment, because a single trial of Benchmark 1 would take more

than 24 hours to finish. It is worth mentioning that as the true coefficient vector is unknown, the

“true” oracle policy is impossible to implement in our experiment. Therefore, the oracle policy

represents the scenario in which XianYu already has access to all sample data in the original

untrimmed dataset to estimate the unknown coefficient vector and identify the optimal assortment

accordingly. For each algorithm, we perform 60 trials and report the average loss of revenue for the

first 5,000 users. The computational time for each algorithm per trial is as follows: 259 seconds

for the Top-K algorithm5, 349 seconds for Benchmark 2, 362 seconds for Benchmark 3, and 678

seconds for Lasso-RP-MNL.

Figure 5 plots the cumulative revenue loss (compared to the oracle policy) under Benchmark 2,

Benchmark 3, Lasso-RP-MNL, and the Top-K algorithm. In this experiment, the Top-K algorithm

and Benchmark 2 seem to fail to converge with 5,000 users and lead to significant revenue loss.

In contrast, Benchmark 3 and Lasso-RP-MNL algorithms have much lower revenue loss and are

able to converge with less than 2,000 users. Among all algorithms, the Lasso-RP-MNL algorithm

performs the best in terms of cumulative revenue loss.

6. Conclusion

In this paper, we propose a computationally efficient Lasso-RP-MNL algorithm for online assort-

ment optimization problems under high-dimensional settings. This algorithm periodically thresh-

olds the Lasso estimator to identify significant features that strongly influence users’ choices

5 In practice, the Top-K algorithm updates its coefficient estimation in an offline fashion, so the computational time
reported for the Top-K algorithm excludes the coefficient estimation time to reflect such a practice.
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Figure 5 The cumulative revenue loss for XianYu assortment recommendation experiment where T =

5,000, d= 10,000 N = 1,000, K = 20, and m= 10.

and adopts random projection to reduce the high-dimensional contextual information to a low-

dimensional space. Therefore, the learning and parameter estimation can be performed in a low-

dimensional fashion to significantly trim down the computational time while maintaining high

accuracy in predicting users’ utilities and choices. For each arriving user, the Lasso-RP-MNL algo-

rithm constructs an upper-confidence bound for every product’s attraction parameter, based on

which the optimistic assortment can be identified through solving a reformulated linear program-

ming problem.

We demonstrate that the Lasso-RP-MNL algorithm’s regret upper bound matches the regret

lower bound on T and achieves a sub-logarithmic dependence on the feature dimension d. Specif-

ically, we show that the expected cumulative regret of the Lasso-RP-MNL algorithm is upper-

bounded by Õ(s
√

logT ·T 2
3 ). Furthermore, when the sample size is large, we can further improve

the Lasso-RP-MNL algorithm’s regret upper bound to Õ(s
√

logT ·T 1
2 ). Finally, through synthetic-

data-based experiments and a high-dimensional XianYu assortment recommendation experiment,

we show that compared to existing state-of-the-art algorithms in the literature and industrial prac-

tices, the Lasso-RP-MNL algorithm is computationally efficient and can significantly improve the

decision-maker’s regret performance.
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Parameters Explanation
t, T Time indexes.

{1,2,3, ...,Nt} The candidate set of available products at time t.
A,At Assortment at time t, i.e., At ⊆ {1,2,3, ...,Nt}.
K The cardinality constrain, i.e., |A| ≤K.

xi, xi,t The feature vector characterize product i and user arriving at time t.
β∗ The true parameter vector for features.
d, s Total/significant feature dimension.
S∗ The true index set for significant features, i.e., S∗ = {j : β∗j 6= 0}.

ri, ri,t The reward for product i at time t.
b,xmax,Rmax Upper-bound parameters for β, xi, and ri defined in Assumption A.1.
Cl1,Cl2, κ Constants defined in the proof of Theorem 1; κ∈ (0,1).
W The index set for all samples collected up to time T .

WR
The index set for random samples collected up to time T by random decay
sampling schedule and WR ⊂W .

nT The size of the index set for random samples WR, i.e., nT = |WR|.
λ A positive regularization parameter for Lasso.

L(β) Log-likelihood function: L(β) = 1
nT

∑
t∈WR

log (pβ,At(ct)).

Classo,C
Constants defined in the proofs of Lemma 1: Classo = 48

√
2xmax

K(K−1)κ
, C = 1

2
K(K −

1)
(
κ/256sx2

max(3 + 2
√

2(1 + 2xmax)
)2

.

G0(T, s) A function defined in Lemma 1: G0(T, s) =Classo · s
√

logd+logT
nT

.

h(T ) A thresholding function defined in Theorem 2.

S The thresholded index set for features selected by thresholding the Lasso
estimator: S = {j : |β̂j| ≥ h(T )}.

P,P0,Q
The random projection matrix, the projection matrix, and the permutation

matrix; P ∈Rm×(d−|S|), P0 =

(
I 0
0 P

)
∈R(|S|+m)×d, and Q∈Rd×d.

z, θ
The projected feature vector and the projected coefficient vector; z := P0Qx
and θ := P0Qβ.

G1(m,T, ε) A function defined in Theorem 3: G1(m,T, ε) = ε
√
s · (h(T ) +G0(T, s)).

τ A positive constant in Eq. (4).
δ,L3, λmax, ρ,ωT ,ΓT Constants defined in Lemma 3.

η A constant defined in Corollary 1.
C0, c1 Constants in the random decay sampling schedule.
Tlasso Lasso step set for the Lasso-RP-MNL algorithm.

C̃f,1, C̃f,2, C̃f,3

Constants defined in the proofs of Theorem 5:

C̃f,1 = c|1− c 2
3 |−1 max{C̃tmp,1c

1
3 , C̃tmp,4c

1
6 ,32 log

1
2 T},

C̃f,2 = C̃tmp,2c|1− c
2
3 |−1, C̃f,3 = 4C̃tmp,3

√
2ΓT c|1− c

2
3 |−1, where

C̃tmp,1 = 4C
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2
0 KRmaxηxmax ·Classo

√
logd+ logT ,

C̃tmp,2 = 6max
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µ2KRmaxλmax

32L2
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, µKRmaxηxmax

2L3

}
max{C2

0 ,C0},

C̃tmp,3 = 2R
3
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3/2(1+Kη)
√
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·max

{
4 log

(
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max
µ
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∑T
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1
t

}
,

C̃tmp,4 = 8
√

2C0xmax

√
(2L3)−1C0Classoµ

√
2(logd+ logT )C−1

0 .
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EC.1. Appendix: Main Proofs
EC.1.1. Proof of Theorem 1

First, we state three basic results, which will be used frequently in the proof, as follows:

1

2
tanh

(x
2

)
=

1

1 + exp(−x)
− 1

2
=

1

2
· 1− exp(−x)

1 + exp(−x)(
tanh

(x
2

))′
=

1

cosh(x) + 1

tanh (x) = tanh(0) +
1

cosh(2ξx) + 1
·x≥ x

cosh(2x) + 1
, where ξ ∈ [0,1].

To prove the regret lower bound, our approach is standard and relies on information theory (e.g., Part IV in

Lattimore and Szepesvári 2020). We start proving this lower bound theorem by considering a special single-

item assortment problem, where the decision-maker offers an assortment with a single item, the candidate

set remains the same for every arriving consumer, and the prices for all products in the candidate set are

equal to 1. Now, let’s construct two sets as follows:

S .
=
{
x∈Rd |xj ∈ {−1,0,1} for j ∈ {1,2, ..., d− 1},‖x‖1 = s− 1, and xd = 0

}
,

H .
=
{
x∈Rd |xj ∈ {−κ,κ} for j ∈ {1,2, ..., d− 1}, and xd = 1

}
,

where κ ∈ (0,1). Now, we define the candidate set A as the union of these two sets, i.e., A= S ∪H. Next,

let define a coefficient vector β as follows:

β = (ε, ..., ε︸ ︷︷ ︸
s−1

,0, ...,0︸ ︷︷ ︸
d−s

,−1),

where ε > 0. Under the assortment problem parameterized by the coefficient vector β, if we pick the item xh

in H, then the corresponding reward equals to the probability that the item xh will be chosen:

1

1 + exp(−βTxh)
=

1

1 + exp(−ε
∑s−1

i=1 xh,i + 1)
.

Similarly for xs in S, the reward will be

1

1 + exp(−βTxs)
=

1

1 + exp(−ε
∑s−1

i=1 xs,i)
.

When ε is small enough, the reward associated with xh will be smaller than that of xs, which implies that

the xh will lead to a higher regret. On the other hand, xh is highly informative, which hints that we need to

address the tradeoff between the regret and the information. Clearly, the optimal single-item assortment in

A, denoted as x∗, is in S and given as follows:

x∗ = arg max
x∈A

1

1 + exp(−βTx)
= arg max

x∈A
βTx= (1, ...,1︸ ︷︷ ︸

s−1

,0, ...,0).

Next, we will construct an alternative assortment problem parameterized by a coefficient vector β̃, under

which it is hard to distinguish β̃ and β and the optimal assortment for β is suboptimal for β̃ and vice

versa. We denote Pβ and Pβ̃ as measures on the sequence of assortments and their corresponding rewards

(x1, y1, ..., xn, yn), where xt is the single-item assortment offered at time t and yt is the corresponding reward,
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by β and β̃ respectively, and Eβ and Eβ̃ as the corresponding expectation operators. Then, we construct a

new set S ′ as follows:

S ′ .=
{
x∈Rd|xj = 0 for j = {1,2, ..., s− 1, d}, xj ∈ {−1,0,1} for j ∈ {s, s+ 1, ..., d− 1},‖x‖1 = s− 1

}
.

Note that S ′ is a subset of S, i.e., S ′ ⊂S. Further, we denote

x̃= arg min
z∈S′

Eβ

[
n∑
t=1

(
xTt z

)2]

and construct the alternative coefficient vector β̃ as follows:

β̃ = β− 2εx̃.

Finally, we define an event

E =

{
1

3

n∑
t=1

1(xt ∈ S) ·βTxt ≤ n tanh

(
(s− 1)ε

6

)}
(EC.1)

and will show that when the event E occurs, the expected cumulative regret is large under the assortment

problem parameterized by β; when it doesn’t occur, then the expected cumulative regret is large under the

alternative assortment problem parameterized by β̃. Specifically, we have the following technical lemma (the

proofs for all technical lemmas are deferred to the second section of this Electronic Companion):

Lemma EC.1. For small enough ε, the expected cumulative regret lower bounds with respect to the event

E are Rβ(n)≥ n
4

tanh
(

(s−1)ε

6

)
Pβ(E) and Rβ̃(n)≥ n

4
tanh

(
(s−1)ε

6

)
Pβ̃(Ec).

Combining Lemma EC.1 and Bretagnolle-Huber Inequality, we can directly show that

Rβ(n) +Rβ̃(n)≥ n

4
tanh

(
(s− 1)ε

6

)(
Pβ(E) +Pβ̃(Ec)

)
≥ n

8
tanh

(
(s− 1)ε

6

)
exp

(
−KL

(
Pβ,Pβ̃

))
, (EC.2)

in which the KL divergence between Pβ and Pβ̃, i.e., KL
(
Pβ,Pβ̃

)
, can be further upper bounded by the

following lemma:

Lemma EC.2. KL
(
Pβ,Pβ̃

)
≤ 12ε2

(
n(s−1)2

d−s +
∑n

t=1 1(xt ∈H)(s− 1)κ2
)

.

Combining (EC.2) with Lemma EC.2, we can show that when
∑n

t=1 1(xt ∈H)≤ 1
12ε2κ2(s−1)

, the following

inequality holds:

Rβ(n) +Rβ̃(n)≥ n

8
tanh

(
(s− 1)ε

6

)
exp

(
−12ε2(s− 1)2

d− s
·n
)
· exp(−1)

=
n

8e
tanh

(
(s− 1)ε

6

)
exp

(
−12ε2(s− 1)2

d− s
·n
)
.

On the other hand, if
∑n

t=1 1(xt ∈H)≥ 1
12ε2κ2(s−1)

, then we have the following inequality:

Rβ(n)≥Eβ

[∑
t=1

1(xt ∈H) min
x∈H

(
1

1 + exp(−βTx∗)
− 1

1 + exp(−βTxt)

)]
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=Eβ

[∑
t=1

1(xt ∈H) min
x∈H

(
1

1 + exp(−βTx∗)
− 1

2
+

1

2
− 1

1 + exp(−βTxt)

)]

=
1

2
Eβ

[∑
t=1

1(xt ∈H) min
xt∈H

(
tanh

(
βTx∗

2

)
− tanh

(
βTxt

2

))]

=
1

2
Eβ

[∑
t=1

1(xt ∈H) min
xt∈H

(
βT (x∗−xt)

2(cosh(ξt) + 1)

)]
, (EC.3)

where xt = (

s−1︷ ︸︸ ︷
κ, ..., κ,0, ...,0,1) and ξt is between ε(s− 1)κ− 1 and ε(s− 1). When ε is small enough, we have

cosh(ξt)≤ 2. Accordingly, we can simplify (EC.3) as follows:

Rβ(n)≥ 1

2
Eβ

[∑
t=1

1(xt ∈H)
ε(s− 1)− ε(s− 1)κ+ 1

6

]

=
1

12
Eβ

[∑
t=1

1(xt ∈H)(ε(s− 1)(1−κ) + 1)

]

≥ 1

12
· ε(s− 1)(1−κ) + 1

12ε2κ2(s− 1)
.

Combining these two cases, we can show that

Rβ(n) +Rβ̃(n)≥min


n

8e
tanh

(
(s− 1)ε

6

)
exp

(
−12ε2(s− 1)2

d− s
·n
)

︸ ︷︷ ︸
(a)

,
ε(s− 1)(1−κ) + 1

144ε2κ2(s− 1)︸ ︷︷ ︸
(b)

 . (EC.4)

For small sample size (e.g., n≤ (d− s)3/(s− 1)2), we can set ε= (s−1)−2/3n−1/3. Next, we consider term

(a) and term (b) in (EC.4) separately. For term (a), we can show that

(a)≥ n

8e
tanh

(
(s− 1)1/3n−1/3

6

)
exp (−12)

=
n

8e

[
0 +

(s− 1)1/3n−1/3

6(cosh(ξ(s− 1)1/3n−1/3/3) + 1)

]
exp (−12)

≥ n

8e

[
0 +

(s− 1)1/3n−1/3

6(cosh((s− 1)1/3n−1/3/3) + 1)

]
exp (−12)

=
exp (−12)

48e(cosh((s− 1)1/3n−1/3/3) + 1)
· (s− 1)1/3n2/3,

where ξ ∈ [0,1]. For term (b), we can show that

(b) =
ε(s− 1)(1−κ) + 1

144ε2κ2(s− 1)
=

(s− 1)1/3n−1/3(1−κ) + 1

144(s− 1)−1/3n−2/3κ2

=
(1−κ)(s− 1)2/3n1/3

144κ2
+

(s− 1)1/3n2/3

144κ2

=

(
(1−κ)(s− 1)1/3n−1/3 + 1

144κ2

)
(s− 1)1/3n2/3

≥
(

1

144κ2

)
(s− 1)1/3n2/3.

Therefore, combining these two results, we have

max
(
Rβ(n),Rβ̃(n)

)
≥ 1

2
(Rβ(n) +Rβ̃(n))≥Cl1(s− 1)1/3n2/3, (EC.5)
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where

Cl1 = min

{
exp (−12)

96e(cosh((s− 1)1/3n−1/3/3) + 1)
,

1

288κ2

}
.

On the other hand, for large samples (e.g., n≥ (d− s)3/(s− 1)2), we can choose ε= 1
s−1

√
d
n

so that

(a)≥ n

8e
tanh

(
d1/2n−1/2

6

)
exp (−12)

≥ 1

48e(cosh(d1/2n−1/2/3) + 1)
· d1/2n1/2,

and

(b)≥ d1/2n1/2(1−κ) +n

144d(s− 1)−1κ2
=

(1−κ) + d−1/2n1/2

144d(s− 1)−1κ2
· d1/2n1/2,

combining which two, we can show that

max
(
Rβ(n),Rβ̃(n)

)
≥Cl2d1/2n1/2, (EC.6)

where

Cl2 = min

{
1

96e(cosh(d1/2n−1/2/3) + 1)
,
(1−κ) + d−1/2n1/2

288d(s− 1)−1κ2

}
Finally, combining (EC.5) and (EC.6), we have

max
(
Rβ(n),Rβ̃(n)

)
≥min

{
Cl1(s− 1)1/3n2/3,Cl2d

1/2n1/2
}
.

EC.1.2. Proof of Lemma 1

Since β̂ is the optimal solution for the Lasso problem, we have

∇L(β̂) +λ∂‖β̂‖1 = 0,

where ∂(·) denotes the subgradient. As the negative log-likelihood function L is twice differentiable, there

exists a ξ such that

∇L(β∗)−∇2L(ξ)(β∗− β̂) =∇L(β̂)

⇒∇L(β∗)−∇2L(ξ)(β∗− β̂) +λ∂‖β̂‖1 = 0

⇒ (β∗− β̂)T∇2L(ξ)(β∗− β̂) = (β∗− β̂)T
(
∇L(β∗) +λ∂‖β̂‖1

)
⇒ (β∗− β̂)T∇2L(ξ)(β∗− β̂)≤ ‖β∗− β̂‖1 (‖∇L(β∗)‖∞+λ) . (EC.7)

Next, we will build the lower bound for the left-hand-side of (EC.7) by the following technical lemma.

Lemma EC.3. Denote nT as the random sample size up to time T . If Assumption A.2 holds, then the

following inequality holds with probability 1− exp(−CnT ):

uT∇2L(ξ|x,A)u≥ K(K − 1)κ

4s
‖uS‖21, (EC.8)
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where u satisfy ‖uSc‖1 ≤ 3‖uS‖1 and C = 1
2
K(K − 1)

(
κ/256sx2

max(3 + 2
√

2(1 + 2xmax)
)2

. Moreover, when

nT > logT/C, we have

P

(
uT∇2(ξ|x,A)u≥ K(K − 1)κ

4s
‖uS‖21

)
≥ 1− 1

T
(EC.9)

Note that based on Lemma EC.3, to show that the left-hand-side of (EC.7) is lower bounded by K(K −
1)κ/(4s) · ‖β∗S∗ − β̂S∗‖21, we only need to prove ‖β∗(S∗)c − β̂(S∗)c‖1 ≤ 3‖β∗S∗ − β̂S∗‖1 . As β̂ is the optimal

solution for the Lasso problem, we have

L(β̂) +λ‖β̂‖1 ≤L(β∗) +λ‖β∗‖1

⇒L(β̂)−L(β∗)≤ λ(‖β∗‖1−‖β̂‖1)

⇒∇L(β∗)(β̂−β∗)≤ λ
(
‖β∗‖1−‖β̂‖1

)
⇒−‖∇L(β∗)‖∞‖β̂−β∗‖1 ≤ λ

(
‖β∗‖1−‖β̂‖1

)
⇒−‖∇L(β∗)‖∞(‖β̂(S∗)c −β∗(S∗)c‖1 + ‖β̂S∗ −β∗S∗‖1)≤ λ(‖β̂∗S∗‖1 + 0−‖β̂S∗‖1−‖β̂(S∗)c‖1)

⇒−‖∇L(β∗)‖∞(‖β̂(S∗)c −β∗(S∗)c‖1 + ‖β̂S∗ −β∗S∗‖1)≤ λ(‖β̂∗S∗ − β̂S∗‖1−‖β̂∗(S∗)c − β̂(S∗)c‖1)

⇒ (λ−‖∇L(β∗)‖∞)‖β̂(S∗)c −β∗(S∗)c‖1 ≤ (λ+ ‖∇L(β∗)‖∞)‖β̂∗S∗ − β̂S∗‖1. (EC.10)

Therefore, if we have ‖∇L(β∗)‖∞ ≤ 1
2
λ, then (EC.10) directly implies ‖β∗(S∗)c − β̂(S∗)c‖1 ≤ 3‖β∗S∗ − β̂S∗‖1.

Such a condition can be shown in the following technical lemma.

Lemma EC.4. Let n denote the random sample size. If Assumption A.1 holds, then for any T > 0, we

have

P

(
‖∇L(β∗)‖∞ ≥

√
2x2

max(logd+ logT )

n

)
≤ 2

T
. (EC.11)

If we set λ= 2
√

2x2max(log d+logT )

n
, then Lemma EC.4 suggests that with probability 1−O(T−1), we have

‖∇L(β∗)‖∞ ≤
1

2
λ. (EC.12)

Combining (EC.10) and (EC.12), we have

‖β̂(S∗)c −β∗(S∗)c‖1 ≤ 3‖β̂∗S∗ − β̂S∗‖1. (EC.13)

Hence, We can use Lemma EC.3 to show that with high probability, the following inequality holds:

(β∗− β̂)T∇2L(ξ)(β∗− β̂)≥ K(K − 1)κ

4s
‖β∗S∗ − β̂S∗‖21. (EC.14)

Using (EC.13) and (EC.14) we can show

(β∗− β̂)T∇2L(ξ)(β∗− β̂)≥ K(K − 1)κ

16s
‖β∗− β̂‖21. (EC.15)

Moreover, combine (EC.15), (EC.12) and (EC.7) and we reach

K(K − 1)κ

16s
‖β∗− β̂‖21 ≤

3

2
λ‖β∗− β̂‖1

⇒‖β∗− β̂‖1 ≤
24s

K(K − 1)κ
λ. (EC.16)
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The remaining part of this Lemma follows directly by setting Classo = 48
√

2xmax

K(K−1)κ
and n≥ logT/C =O(s2 logT ).

EC.1.3. Proof of Theorem 2

When event Elasso(T ) holds, we have

‖β̂−β∗‖1 ≤G0(T, s),

which implies that |β̂j | ≤ |β∗j |+G0(T, s) and |β̂j | ≥ |β∗j | −G0(T, s) for any j.

Combining |β̂j | ≤ |β∗j |+ G0(T, s) with the definition of the index set S = {j : |β̂j | ≥ h(T )}, we can show

that

j /∈ S ⇒ |β̂j |<h(T )⇒ |β∗j |<h(T ) +G0(T, s). (EC.17)

Next, we consider the upper bound for |S|:

‖β̂−β∗‖1 ≥ ‖β̂(S∗)c −0‖1 ≥ ‖β̂(S∗)c∩S‖1 ≥ |S −S∗|min
j∈S
|β̂j | ≥ |S −S∗|h(T ). (EC.18)

Combining (EC.18) with ‖β̂−β∗‖1 ≤G0(T, s), we will have

|S −S∗|h(T )≤G0(T )⇒ |S| ≤ G0(T )

h(T )
+ |S∗| ≤ G0(T )

h(T )
+ s. (EC.19)

EC.1.4. Proof of Lemma 2

According to the choice of P , for and x∈Rd and j-th row of matrix P with j ≤m, we have

E [Pjx] = 0 and E
[
(Pjx)2

]
=

1

m
‖x‖22, (EC.20)

Due to the gaussian choice, above inequality implies z̃j =
√
mPjx/‖x‖2 is distributed as N (0,1), and z̃j are

independent among j = 1,2, ...,m. Then,

P

(
‖Px‖22 > (1 + ε)‖x‖22

)
=P

(
m∑
j=1

z̃2
j > (1 + ε)m

)
=P

(
χ2
m < (1 + ε)m

)
, (EC.21)

where χ2
m is the chi-squared distribution with m degrees of freedom. Via standard tail-inequality for chi-

squared distribution, for ε∈ (0,1/2),

p
(
χ2
m > (1 + ε)m

)
≤ exp

(
−m

8
ε2
)
. (EC.22)

Combining (EC.21) and (EC.22), we have

P

(
‖Px‖22 > (1 + ε)‖x‖22

)
≤ exp

(
−m

8
ε2
)
. (EC.23)

Similarly, one can verify

P

(
‖Px‖22 < (1− ε)‖x‖22

)
≤ exp

(
−m

8
ε2
)
. (EC.24)

The desirable result is reached.



ec8

EC.1.5. Proof of Theorem 3

As Q is the permutation matrix, we have QTQ= I. Hence, we can show that:

‖(I −Σ)β∗‖2 ≤ max
x∈Sd−1

∣∣xT (I −Σ)β∗
∣∣ , (EC.25)

where Sd−1 is the unit d dimension sphere.∣∣xT (I −Σ)β∗
∣∣= ∣∣xT (I −QTP T

0 P0Q
)
β∗
∣∣

=
∣∣(Qx)

T
(
I −P T

0 P0

)
Qβ∗

∣∣
=

∣∣∣∣(xTS xTSc)[(I I
)
−
(
I
P TP

)](
β∗S
β∗Sc

)∣∣∣∣ (EC.26)

=
∣∣xTSc(I −P TP )β∗Sc

∣∣
=
∣∣xTScβ∗Sc − (PxSc)

T
Pβ∗Sc

∣∣ , (EC.27)

where (EC.26) comes from the definition and construction of the permutation matrix Q and the projection

matrix P0.

We then apply the technical Lemma EC.11 to show that with probability 1− 4 exp
(
−m

8
ε2
)
, we have∣∣xTScβ∗Sc − (PxSc)

T
Pβ∗Sc

∣∣≤ ε‖xTSc‖2‖β∗Sc‖2 ≤ ε‖β∗Sc‖2, (EC.28)

where last inequality uses x∈ Sd−1. Thus via EC.25, EC.27 and EC.28, we have

‖(I −Σ)β∗‖2 ≤ ε‖β
∗
Sc‖2 (EC.29)

holds with probability 1−4 exp
(
−m

8
ε2
)
. Finally, by the fact that ‖β∗Sc‖2 ≤

√
s‖β∗Sc‖∞ ≤

√
s(h(T )+G0(T, s)),

we have

P
(
‖(I −Σ)β∗‖2 ≤ ε

√
s · (h(T ) +G0(T, s))

)
≤ 1− 4 exp

(
−m

8
ε2
)
. (EC.30)

EC.1.6. Proof of Lemma 3

To simplify the notations in this proof, we will ignore the A subscript in probability term p·,A(·) and

re-define A as the assortment including both the original assortment A and the no-purchase option (i.e.,

A :=A∪ {0}), as long as doing so does not cause any misinterpretation. Accordingly, the decision-maker’s

expected reward for a coefficient vector θ under this re-defined assortment A can be simplified into RA(θ) =∑
i∈A ri exp((P0Qxi)

T θ)∑
i∈A exp((P0Qxi)T θ)

.

Using Taylor expansion, we can show that there exists a ξ such that

|RA(θ̂)−RA(P0Qβ
∗)|=

∥∥∥∥∇RA(θ̂)T (θ̂−P0Qβ
∗)− 1

2
(θ̂−P0Qβ

∗)T∇2RA(ξ)(θ̂−P0Qβ
∗)

∥∥∥∥
≤ ‖∇RA(θ̂)T (θ̂−P0Qβ

∗)‖+

∥∥∥∥1

2
(θ̂−P0Qβ

∗)T∇2RA(ξ)(θ̂−P0Qβ
∗)

∥∥∥∥
≤
√
‖∇RA(θ̂)T (θ̂−P0Qβ∗)‖2 +

1

2

∥∥∇2RA(ξ)
∥∥
op
‖θ̂−P0Qβ

∗‖2

=

a©︷ ︸︸ ︷√
(θ̂−P0Qβ∗)T∇RA(θ̂)∇RA(θ̂)T (θ̂−P0Qβ∗) +

b©︷ ︸︸ ︷
1

2

∥∥∇2RA(ξ)
∥∥
op
‖θ̂−P0Qβ

∗‖2 .
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Now, we will separately build upper bounds for a© and b©.

Analysis for a©: From the definition of RA(θ̂) and using pQTPT0 θ(i) to represent the probability of selecting

product i from the assortment A (i.e., pQTPT0 θ(i) = 1/(
∑

i∈A exp((P0Qxi)
T θ))), we can show that

∇RA(θ̂) =

∑
i∈A ri exp(xTi Q

TP T
0 θ̂)P0Qxi · (

∑
j∈A exp(xTj Q

TP T
0 θ̂))

(
∑

j∈A exp(xTj Q
TP T

0 θ̂))
2

−
(
∑

i∈A ri exp(xTi Q
TP T

0 θ̂)) · (
∑

j∈A exp(xTj Q
TP T

0 θ̂)P0Qxj)

(
∑

j∈A exp(xTj Q
TP T

0 θ̂))
2

=
∑
i∈A

P0QxiripQTPT0 θ̂(i)−
∑
i∈A

ripQTPT0 θ̂(i) ·
∑
j∈A

P0QxjpQTPT0 θ̂(j)

=
∑
i∈A

ripQTPT0 θ̂(i)

[
P0Qxi−

∑
j∈A

P0QxjpQTPT0 θ̂(j)

]

=
∑
i∈A

pQTPT0 θ̂(i)

[
ri−

∑
j∈A

pQTPT0 θ̂(j)ri

][
P0Qxi−

∑
j∈A

pQTPT0 θ̂(j)P0Qxj

]
. (EC.31)

We write (EC.31) in short-hand notation as follows:

(EC.31) := Ẽ
[(
r− Ẽ[r]

)(
z− Ẽ[z]

)]
, (EC.32)

where Ẽ represents the expectation w.r.t. probability distribution {pQTPT0 θ̂(i)} and zi = P0Qxi for all i∈A.

Then we have

∇RS(θ̂)∇RS(θ̂)T = Ẽ
[(
r− Ẽ[r]

)(
z− Ẽ[z]

)]
· Ẽ
[(
r− Ẽ[r]

)(
z− Ẽ[z]

)]T
= Ẽ

(r− Ẽ[r]
)(

z− Ẽ[z]
)
·

∗︷ ︸︸ ︷
Ẽ

[(
r− Ẽ[r]

)(
z− Ẽ[z]

)]T (EC.33)

� Ẽ
[
Ẽ

[(
r− Ẽ[r]

)(
z− Ẽ[z]

)
·
(
r− Ẽ[r]

)(
z− Ẽ[z]

)T]]
(EC.34)

= Ẽ

[(
r− Ẽ[r]

)2 (
z− Ẽ[z]

)(
z− Ẽ[z]

)T]
�R2

maxẼ

[(
z− Ẽ[z]

)(
z− Ẽ[z]

)T]
,

where in (EC.34) we uses the Jensen’s inequality (e.g., equation 2.2.2 in Tropp et al. 2015) on the * term in

(EC.33).

To simplify notation, we can show that ∇2fA(θ̂) = Ẽ

[(
z− Ẽ[z]

)(
z− Ẽ[z]

)T]
(see Lemma EC.10). Then,

we have√
(θ̂−P0Qβ∗)T∇RA(θ̂)∇RA(θ̂)T (θ̂−P0Qβ∗)≤Rmax

√
(θ̂−P0Qβ∗)T∇2fA(θ̂)(θ̂−P0Qβ∗). (EC.35)

Analysis for b©: As we assume ‖∇2RA(ξ)‖op ≤ λmax, we can bound b© as follows:

1

2

∥∥∇2RA(ξ)
∥∥
op
‖θ̂−P0Qβ

∗‖2 ≤ 1

2
λmaxδ

2.
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Combining the upper bounds for the part a© and part b©, we have

|RA(θ̂)−RA(P0Qβ
∗)| ≤Rmax

√
(θ̂−P0Qβ∗)T∇2fA(θ̂)(θ̂−P0Qβ∗) +

1

2
λmaxδ

2

⇒|RA(θ̂)−RA(P0Qβ
∗)| − 1

2
λmaxδ

2 ≤Rmax

√
(θ̂−P0Qβ∗)T∇2fA(θ̂)(θ̂−P0Qβ∗) (EC.36)

Denote H∗ =
(∑T

i
∇2fAi(P0Qβ

∗)
)
. We show that H∗ is positive definite with high probability in Lemma

EC.8. Therefore, (EC.36) implies

|RA(θ̂)−RA(P0Qβ
∗)| − 1

2
λmaxδ

2

≤Rmax

√
(θ̂−P0Qβ∗)T (H∗)1/2(H∗)−1/2∇2fA(θ̂)(H∗)−1/2(H∗)1/2(θ̂−P0Qβ∗)

≤Rmax

∥∥∥(θ̂−P0Qβ
∗)T (H∗)1/2

∥∥∥√∥∥∥(H∗)−1/2∇2fA(θ̂)(H∗)−1/2

∥∥∥
op

=Rmax

√
(θ̂−P0Qβ∗)TH∗(θ̂−P0Qβ∗) ·

√∥∥∥(H∗)
−1/2∇2fA(θ̂) (H∗)

−1/2
∥∥∥
op
. (EC.37)

Then, we use the following Lemma:

Lemma EC.5. Let δ = ‖θ − P0Qβ
∗‖. Under Assumptions A.1 and A.3, events E2(m,T, ε) and

Erp(m,d,1/2), if δ ≤ min{ 3
4
nT µ

TL3
, ρ

8Kxmax
} and G1(m,T, ε) ≤ ρ

8Kxmax
, then the following inequality holds for

T ≥ 2 with probability 1− 4 exp(−m
8
ε2)−O(1/T ):

(θ−P0Qβ
∗)T

(∑
t

∇2fAt(P0Qβ
∗)

)
(θ−P0Qβ

∗)≤ 16x2
maxTG1(m,T, ε)δ+ 128(2(|S|+m) + 1) log(T ) + 8ΓT ,

where ΓT := max
{

0,
∑

t f̂t(θ̂)
}

.

Combining Lemma EC.5, (EC.37), H∗ =
(∑T

i
∇2fAi(P0Qβ

∗)
)
,
∑T

t=1 f̂t(θ̂) = TLz(θ̂) and the definition of

ωt, we can show that

|RA(θ̂)−RA(P0Qβ
∗)| − 1

2
λmaxδ

2

≤Rmaxωt

√√√√√
∥∥∥∥∥∥
(

T∑
i=1

∇2fAi(P0Qβ∗)

)−1/2

∇2fA(θ̂)

(
T∑
i=1

∇2f(P0Qβ∗)

)−1/2
∥∥∥∥∥∥
op

.

Furthermore, for all i≤ T , we can show that∥∥∥∇2fAi(P0Qβ
∗)−∇2fAi(θ̂)

∥∥∥
op
≤L3‖P0Qβ

∗− θ̂‖=L3δ

⇒∇2fAi(θ̂)−L3δI �∇2fAi(P0Qβ
∗).

The lower bound for ∇2f(θ̂) can be established by using Lemma EC.8, which shows that the following

inequality holds with probability 1−O(1/T ):

T∑
i=1

∇2fAi(θ̂)�
1

2
µnT I.
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When δ≤ µnT
4L3T

, we have
∑T

i=1∇2fAi(θ̂)−L3δI � 1
2

∑T

i=1∇2fAi(θ̂), which leads to

√
2

(
T∑
i=1

∇2fAi(θ̂)

)−1/2

�

(
T∑
i=1

∇2fAi(P0Qβ
∗)

)−1/2

.

Therefore, with probability 1− 4 exp
(
−m

8
ε2
)
−O(T−1) the following result holds:

|RA(θ̂)−RA(P0Qβ
∗)| ≤

√
2RmaxωT

√√√√√
∥∥∥∥∥∥
(

T∑
i=1

∇2fAi(θ̂)

)−1/2

∇2fA(θ̂)

(
T∑
i=1

∇2fAi(θ̂)

)−1/2
∥∥∥∥∥∥
op

+
1

2
λmaxδ

2.

EC.1.7. Proof of Corollary 1

If we choose A to be the assortment with a single item with vector x and r= 1, we then have

RA(θ) =
exp(xTQTP T

0 θ)

1 + exp(xTQTP T
0 θ)

(EC.38)

Consider the function φ(x) = x/(1 + x), which monotonically increases in x for x ∈ (0, x0). Therefore, we

have

x1−x2 ≤
|φ(x1)−φ(x2)|

φ′(x0)
=
|φ(x1)−φ(x2)|

(1 +x0)2
≤ |φ(x1)−φ(x2)|

1 +x2
0

, (EC.39)

where last inequality uses (1 +x)2 ≥ 1 +x2 for x≥ 0. Thus, applying Lemma 2, we will have

exp(xTΣβ∗)− exp(xTQTP T
0 θ)≤

|Rs(P0Qβ
∗)−Rs(θ)|

1 + exp(2xmaxb)

≤
√

2ωt
1 + exp(2xmaxb)

√√√√√
∥∥∥∥∥∥
(
t−1∑
i=1

∇2fAi(θ̂)

)−1/2

∇2fA(θ̂)

(
t−1∑
i=1

∇2fAi(θ̂)

)−1/2
∥∥∥∥∥∥
op

+
λmax

2 + 2 exp(2xmaxb)
δ2. (EC.40)

We then bound the difference between exp(xTβ∗) and exp(xTΣβ∗). Via Taylor expansion, there exists a ξ

such that

exp(xTβ∗)− exp(xTΣβ∗) = exp(xT ξ)xT (β∗−Σβ∗)≤ exp(xmaxb)xmaxG1(m,T, ε), (EC.41)

where the last inequality uses Assumption A.1 and Theorem 2. Combining (EC.40), (EC.41) and η =

exp(xmaxb), the desirable result follows.

EC.1.8. Proof of Theorem 4

For simplification, we will ignore the subscript t in this proof. In Corollary 1, we show that for any x we have

exp(xTβ∗)≤ vucb. (EC.42)

Let RucbΣβ∗(A) =
∑
i∈A riv

ucb
i∑

i∈A v
ucb
i

. Combining (EC.42) with Lemma A.3 in Agrawal et al. (2019), we can directly

show that

RucbΣβ∗(A∗)≥Rβ∗(A∗).
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Using the fact that ASRP is the optimal assortment under utilities {vucbi }, we can further show that

RucbΣβ∗(ASRP )≥Rβ∗(A∗). (EC.43)

In addition, we can show that

RucbΣβ∗(A)−Rβ∗(A)≤
∑

i∈A ri(v
ucb
i − exp(xTi β

∗))∑
i∈A v

ucb
i

≤
∑
i∈A

ri(v
ucb
i − exp(xTi β

∗)), (EC.44)

where we use vucb ≥ exp(xβ∗) and
∑

i∈A v
ucb
i ≥ 1. Therefore, we can show that

Rβ∗(A∗)−Rβ∗(ASRP )≤RucbΣβ∗(ASRP )−Rβ∗(ASRP )

≤Rmax

∑
i∈ASRP

(vucbi − exp(xTi β
∗))

=Rmax

∑
i∈ASRP

(
exp(xTQTP T

0 θ̂)− exp(xTi β
∗)
)

+Rmax

∑
i∈ASRP

(
λmax

2φ′(exmaxb)
δ2 + exmaxbxmaxG1(m,T, ε)

)

+Rmax

∑
i∈ASRP

√2Rmaxωt
φ′(exmaxb)

√√√√√
∥∥∥∥∥∥
(

t∑
i=1

∇2fo(θ̂)

)−1/2

∇2fAi(θ̂)

(
t∑

i=1

∇2fAt(θ̂)

)−1/2
∥∥∥∥∥∥
op

 ,

(EC.45)

where the second inequality uses (EC.44). In (EC.45) we denote the assortment with single item i∈A as Ai

and use the definition of vucb.

Next, we need to upper bound the term
∑

i∈ASRP

(
exp(xTi Q

TP T
0 θ̂)− exp(xTi β

∗)
)

. By Taylor expansion,

there exists a set of {ξi : ξi is between xTQTP T
0 θ̂ and xTi β

∗} such that

∑
i∈ASRP

(
exp(xTQTP T

0 θ̂)− exp(xTi β
∗)
)

=
∑

i∈ASRP

exp(ξi)x
T
i (QTP T

0 θ̂−β∗)

=
∑

i∈ASRP

exp(ξi)x
T
i (QTP T

0 θ̂−Σβ∗+ Σβ∗−β∗)

=
∑

i∈ASRP

exp(ξi)
[
xTi (QTP T

0 θ̂−Σβ∗) +xTi (Σβ∗−β∗)
]

=
∑

i∈ASRP

exp(ξi)
[
zTi (θ̂−P0Qβ

∗) +xTi (Σ− I)β∗
]

≤
∑

i∈ASRP

exp(ξi)
[
max
i
‖zi‖δ+xmaxG1(m,T, ε)

]
, (EC.46)

where last inequality uses ‖xi‖ ≤ xmax and δ = ‖θ̂−P0Qβ
∗‖ in Assumption A.1 and event E2(m,T ).

Under the event Erp(m,d,1/2), we have ‖zi‖ ≤ 2‖xi‖ ≤ 2xmax. Combining this result with (EC.46), we have

∑
i∈ASRP

(
exp(zTi θ̂)− exp(xTi β

∗)
)
≤

∑
i∈ASRP

exp(ξi) ·xmax(2δ+G1(m,T, ε))≤K exp(xmaxb)xmax(2δ+G1(m,T, ε)).

(EC.47)
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Then, we will upper bound the term
∑

i∈ASRP

√∥∥∥∥(∑T

i=1∇2fAi(θ̂)
)−1/2

∇2fAi(θ̂)
(∑T

i=1∇2fAi(θ̂)
)−1/2

∥∥∥∥
op

.

First, using Lemma EC.10, we can show that

∇2fA(θ̂) = Ẽ

[(
z− Ẽ[z]

)(
z− Ẽ[z]

)T]
= Ẽ

[
zzT

]
− Ẽ [z] Ẽ

[
zT
]

= Ẽ

[
z
(
zT − Ẽ [z]

)T]
=
∑
i∈A

pQTPT0 θ̂(i)

[
zi

(∑
j∈At

pQTPT0 θ̂(j)(zi− zj)

)T]
=
∑
i,j∈A

pQTPT0 θ̂(i)pQTPT0 θ̂(j)
[
zi (zi− zj)T

]
=
∑
i>j∈A

pQTPT0 θ̂(i)pQTPT0 θ̂(j)
[
zi (zi− zj)T + zj (zj − zi)T

]
=
∑
i>j∈A

pQTPT0 θ̂(i)pQTPT0 θ̂(j)
[
(zi− zj) (zi− zj)T

]
�
∑
i∈A

pQTPT0 θ̂(i)pQTPT0 θ̂(0)
[
ziz

T
i

]
Moreover, by the definition of single item assortment Ai, we have

∇2fAi(θ̂) = Ẽ

[(
z− Ẽ[z]

)(
z− Ẽ[z]

)T]
= pQTPT0 θ̂,Ai(i)ziz

T
i − pQTPT0 θ̂,Ai(i) · (zi)

(
pQTPT0 θ̂,Ai(i) · (zi)

)T
= pQTPT0 θ̂,Ai(i)pQTPT0 θ̂,Ai(0)ziz

T
i

⇒ ziz
T
i =

∇2fAi(θ̂)

pQTPT0 θ̂,Ai(i)pQTPT0 θ̂,Ai(0)

Therefore

∇2fA(θ̂)�
∑
i∈A

pQTPT0 θ̂(i)pQTPT0 θ̂(0)
[
ziz

T
i

]
=
∑
i∈A

pQTPT0 θ̂(i)pQTPT0 θ̂(0)

pQTPT0 θ̂,Ai(i)pQTPT0 θ̂,Ai(0)
∇2fAi(θ̂)

⇒∇2fA(θ̂)�min
i

{
pQTPT0 θ̂(i)pQTPT0 θ̂(0)

pQTPT0 θ̂,Ai(i)pQTPT0 θ̂,Ai(0)

}∑
i∈A

∇2fAi(θ̂),

which implies that ∑
i∈A

∇2fAi(θ̂)�max
i

{
pQTPT0 θ̂,Ai(i)pQTPT0 θ̂,Ai(0)

pQTPT0 θ̂(i)pQTPT0 θ̂(0)

}
∇2fA(θ̂).

As x and β have upper bounds xmax, b and Σβ̂ is feasible, we know that

exp(xTΣβ̂)∈ [1/ exp(xmaxb), exp(xmaxb)].

As η := exp(xmaxb), then we have

pQTPT0 θ̂,Ai(i)≤ η/(1 + η), pQTPT0 θ̂,Ai(0)≤ η/(1 + η)
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pQTPT0 θ̂(i)≥ (η+Kη2)−1, pQTPT0 θ̂(0)≥ (1 +Kη)−1

Thus we have

∑
i

∇2fAi(θ̂)�
η2(η+Kη2)(1 +Kη)

(1 + η)2
∇2fA(θ̂) =

η3(1 +Kη)2

(1 + η)2
∇2fA(θ̂)

⇒∇2fAi(θ̂)�
η3(1 +Kη)2

(1 + η)2
∇2fA(θ̂)

⇒
∑

i∈ASRP

√√√√√
∥∥∥∥∥∥
(

T∑
i=1

∇2fAi(θ̂)

)−1/2

∇2fAi(θ̂)

(
T∑
i=1

∇2fAi(θ̂)

)−1/2
∥∥∥∥∥∥
op

≤K

√√√√√
∥∥∥∥∥∥
(

T∑
i=1

∇2fAi(θ̂)

)−1/2

η3(1 +Kη)2

(1 + η)2
∇2fA(θ̂)

(
T∑
i=1

∇2fAi(θ̂)

)−1/2
∥∥∥∥∥∥
op

=
Kη3/2(1 +Kη)

(1 + η)

√√√√√
∥∥∥∥∥∥
(

T∑
i=1

∇2fAi(θ̂)

)−1/2

∇2fA(θ̂)

(
T∑
i=1

∇2fAi(θ̂)

)−1/2
∥∥∥∥∥∥
op

. (EC.48)

Finally, the theorem follows directly by combining (EC.45), (EC.47), and (EC.48).

EC.1.9. Proof of Theorem 5

Let both events Elasso(T ) and Erp(m,d,1/2) hold. We separate the expected cumulative regret under random

samples from that without random samples:

REGRET(T )≤

(Random samples)︷ ︸︸ ︷
T∑

t∈random

E[Rt,β∗(A∗t )−Rt,β∗(At)] +

(Non-random samples)︷ ︸︸ ︷
T∑

t/∈random

E[Rt,β∗(A∗t )−Rt,β∗(At)] .

Non-random samples part: Recall that we periodically update the projection matrix P0 based on the

Lasso problem. We start with considering the cumulative regret for a arbitrary single period. Without loss

of generality, we consider the period starting from Ta and ending at Tb.

By Theorem 4, with high probability we have

∑
t/∈random,t∈[Ta,Tb)

Rt,β∗(A∗)−Rt,β∗(At)

≤

a©︷ ︸︸ ︷∑
t/∈random,t∈[Ta,Tb)

2RmaxKηxmaxG1(m,T, ε)

+

b©︷ ︸︸ ︷∑
t/∈random,t∈[Ta,Tb)

RmaxKλmax

2 + 2η2
δ2 + 2KRmaxηxmaxδ
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+

c©︷ ︸︸ ︷∑
t/∈random,t∈[Ta,Tb)

min

Rmax,
Kη3/2(1 +Kη)

√
2ωt

(1 + η2)(1 + η)

√√√√√
∥∥∥∥∥∥
(∑
i∈W

∇2fAi(θ̂)

)−1/2

∇2fASRP (θ̂)

(∑
i∈W

∇2f(θ̂)

)−1/2
∥∥∥∥∥∥
op

 .

(EC.49)

The bound for part a©:

a©≤
Tb−1∑
t=Ta

2KRmaxηxmax · ε
√
s ·Classo(s+ ŝ)

√
logd+ log t

nTa

≤
Tb−1∑
t=Ta

2KRmaxηxmax · ε
√
s ·Classo(s+ ŝ)

√
logd+ logT

nTa

≤(Tb−Ta− 1) · 2KRmaxηxmax · ε
√
s ·Classo(s+ ŝ)

√
logd+ logT

nTa
. (EC.50)

The bound for part b©: As δt ≤ ntµ

4tL3
, we can show that

b©≤KRmaxλmax

2 + 2η2

Tb−1∑
t=Ta

δ2 + 2KRmaxηxmax

Tb−1∑
t=Ta

δ

≤µ
2KRmaxλmax

32L2
3(1 + η2)

Tb−1∑
t=Ta

n2
t

t2
+
µKRmaxηxmax

2L3

Tb−1∑
t=Ta

nt
t
. (EC.51)

The bound for part c©:

Note for Rmax ≥ 1 and KR2η3/2(1+Kη)
√

2ωt
(1+η2)(1+η)

≥ 1, we can show that

c©≤R
3
maxKη

3/2(1 +Kη)
√

2ωt
(1 + η2)(1 + η)

Tb−1∑
t=Ta

min

1,

√√√√√
∥∥∥∥∥∥
(∑
i∈W

∇2fAi(θ̂)

)−1/2

∇2fAt(θ̂)

(∑
i∈W

∇2fAi(θ̂)

)−1/2
∥∥∥∥∥∥
op


≤R

3
maxKη

3/2(1 +Kη)
√

2ωt
(1 + η2)(1 + η)

√
Tb−Ta− 1

√√√√√Tb−1∑
t=Ta

min

1,

∥∥∥∥∥∥
(∑
i∈W

∇2fAi(θ̂)

)−1/2

∇2fAt(θ̂)

(∑
i∈W

∇2fAi(θ̂)

)−1/2
∥∥∥∥∥∥
op

,
where the last inequality uses the fact that

∑b

i=1

√
ci ≤

√
b
√∑b

i=1 ci holds for all b, ci > 0. As f(·) has

Lipschitz hessian, we have∥∥∥∇2fAt(θ̂)−∇2fAt(P0Qβ
∗)
∥∥∥
op
≤L3‖θ̂−P0Qβ

∗‖ ≤L3δt. (EC.52)

When δt ≤ ntµ

4tL3
, using Lemma EC.8, we can verify that with high probability∑

t

∇2fAt(θ̂)�
1

2

∑
t

∇2fAt(P0Qβ
∗)

⇒

(∑
t

∇2fAt(θ̂)

)−1/2

�
√

2

(∑
t

∇2fAt(P0Qβ
∗)

)−1/2

.

Therefore,

Tb−1∑
t=Ta

min

1,

∥∥∥∥∥∥
(∑
i∈W

∇2fAi(θ̂)

)−1/2

∇2fAt(θ̂)

(∑
i∈W

∇2fAi(θ̂)

)−1/2
∥∥∥∥∥∥
op





ec16

≤2

Tb−1∑
t=Ta

min

1,

∥∥∥∥∥∥
(∑
i∈W

∇2fAi(P0Qβ
∗)

)−1/2

∇2fAt(θ̂)

(∑
i∈W

∇2fAi(P0Qβ
∗)

)−1/2
∥∥∥∥∥∥
op


≤2

Tb−1∑
t=Ta

min

1,

∥∥∥∥∥∥
(∑
i∈W

∇2fAi(P0Qβ
∗)

)−1/2

∇2fAt(P0Qβ
∗)

(∑
i∈W

∇2fAi(P0Qβ
∗)

)−1/2
∥∥∥∥∥∥
op


+2

Tb−1∑
t=Ta

∥∥∥∥∥∥
(∑
i∈W

∇2fAi(P0Qβ
∗)

)−1/2 (
∇2fAt(θ̂)−∇2fAt(P0Qβ

∗)
)(∑

i∈W

∇2fAi(P0Qβ
∗)

)−1/2
∥∥∥∥∥∥
op

≤ 4(|S|+m) log

(
8(Tb−Ta)K2x2

max

µnTa

)
+ 2

Tb−1∑
t=Ta

L3δt

∥∥∥∥∥∥
(∑
t∈W

∇2f(P0Qβ
∗)

)−1
∥∥∥∥∥∥
op

(EC.53)

≤ 4(|S|+m) log

(
8(Tb−Ta)K2x2

max

µ

)
+

Tb−1∑
t=Ta

4L3δt
µnt

(EC.54)

≤ 4(|S|+m) log

(
8(Tb−Ta)K2x2

max

µ

)
+

Tb−1∑
t=Ta

4L3

µnt

ntµ

4tL3

(EC.55)

≤ 4(|S|+m) log

(
8(Tb−Ta)K2x2

max

µ

)
+

Tb−1∑
t=Ta

1

t
,

where (EC.53) uses Lemma EC.9 and (EC.52), (EC.54) uses Lemma EC.8, and (EC.55) uses δt ≤ ntµ

4tL3
.

Therefore, we can upper bound part c© as follow:

c©≤ R3
maxKη

3/2(1 +Kη)
√

2ωt
(1 + η2)(1 + η)

√
Tb−Ta− 1

√√√√4(|Si|+m) log

(
8(Tb−Ta)K2x2

max

µ

)
+

Tb−1∑
t=Ta

1

t
. (EC.56)

Hence, we can show that the upper bound for non-random part is

T∑
t/∈random,t∈[Ta,Tb)

E[Rt,β∗(A∗t )−Rt,β∗(At)]

≤ (Tb−Ta− 1) · 2KRmaxηxmax · ε
√
s ·Classo(s+ ŝ)

√
logd+ logTb

nTa

+
µ2KRmaxλmax

32L2
3(1 + η2)

Tb−1∑
t=Ta

n2
t

t2
+
µKRmaxηxmax

2L3

Tb−1∑
t=Ta

nt
t

+
R3

maxKη
3/2(1 +Kη)

√
2ωt

(1 + η2)(1 + η)

√
Tb−Ta− 1

√√√√4(|Si|+m) log

(
8(Tb−Ta)K2x2

max

µ

)
+

Tb−1∑
t=Ta

1

t
. (EC.57)

≤Ctmp,1(Tb−Ta) · ε
√
s(s+ ŝ)n−1/2

Ta
+Ctmp,2

Tb−1∑
t=Ta

(
n2
t

t2
+
nt
t

)
+Ctmp,3ωTb

√
Tb−Ta

√
|Si|+m+ 1,

where we set

Ctmp,1 = 2KRmaxηxmax ·Classo
√

logd+ logTb

Ctmp,2 = max

{
µ2KRmaxλmax

32L2
3(1 + η2)

,
µKRmaxηxmax

2L3

}
Ctmp,3 =

R3
maxKη

3/2(1 +Kη)
√

2

(1 + η2)(1 + η)
·max

{
4 log

(
8(Tb−Ta)K2x2

max

µ

)
,

Tb−1∑
t=Ta

1

t

}
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By Chernoff bound, we can show that with probability 1−O(T−1), we have

1

2
C0t

2/3 ≤ nt ≤ 2C0t
2/3. (EC.58)

Combining (EC.58) and (EC.57), we can further simplify as follow:

T∑
t/∈random,t∈[Ta,Tb)

E[Rt,β∗(A∗t )−Rt,β∗(At)]

≤ 2Ctmp,1C
− 1

2
0 (Tb−Ta) · ε

√
s(s+ ŝ)T

− 1
3

a +Ctmp,2

Tb−1∑
t=Ta

(
4C2

0 t
− 2

3 + 2C0t
− 1

3

)
+Ctmp,3ωTb

√
Tb−Ta

√
|Si|+m+ 1

≤ C̃tmp,1 · ε
√
s(s+ ŝ) ·TbT

− 1
3

a + C̃tmp,2T
2
3
b + C̃tmp,3ωTbT

1
2
b

√
|Si|+m, (EC.59)

where

C̃tmp,1 = 2Ctmp,1C
−1/2
0

C̃tmp,2 = 6Ctmp,2 max{C2
0 ,C0}

C̃tmp,3 = 2Ctmp,3.

As we use Tlasso = {ci, i= 0,1,2, ...} random sampling schedule, we have Tb = ci and Ta = ci−1, and we can

further simplify (EC.59) as follows:∑
t/∈random,t∈Period i−1

E[Rt,β∗(A∗t )−Rt,β∗(At)]

≤ C̃tmp,1 · ε
√
s(s+ ŝ) · ci(ci−1)−

1
3 + C̃tmp,26(ci)

2
3 + C̃tmp,3ωTb(c

i)
1
2

√
|Si|+m

≤ C̃tmp,1 · ε
√
s(s+ ŝ) · ci−

i−1
3 + C̃tmp,2c

2i
3 + C̃tmp,3ωTbc

i
2

√
|Si|+m

≤
(
C̃tmp,1c

1
3 · ε
√
s(s+ ŝ) + C̃tmp,2 + C̃tmp,3ωTb

√
|Si|+m

)
c

2i
3 . (EC.60)

Moreover, as ωTb = 4
√

4x2
maxTbG1(m,Tb, ε)δ+ 64(|Si|+m)) log(Tb) + 2ΓTb , G1(m,Tb, ε) = ε

√
s · (h(Tb) +

G0(T, s)), and δTb ≤
ntµ

4tL3
. We can upper bound ωTb as follow

ωTb ≤ 8xmax

√
Tbε
√
s · (G0(Tb, ŝ) +G0(Tb, s))

nTbµ

4TbL3

+ 32
√
|Si|+m log

1
2 (Tb) + 4

√
2ΓTb (EC.61)

≤ 8xmax ·
√

2C
1
2
0 c

i
3 ·
√
ε
√
s ·

√√√√Classo(s+ ŝ)

√
logd+ logTb

1
2
C0c

2(i−1)
3

· 2C0c
2i
3 µ

4ciL3

+ 32
√
|Si|+m log

1
2 (Tb) + 4

√
2ΓTb

=Ctmp,4c
1
6 ε

1
2 s

1
4 ·
√
s+ ŝ+ 32

√
|Si|+m log

1
2 (Tb) + 4

√
2ΓTb , (EC.62)

where (EC.61) uses the fact that
√
a+ b+ c≤

√
a+
√
b+
√
c for all a, b, c≥ 0 and

Ctmp,4 = 8xmax ·
√

2C
1
2
0 ·
√

(2L3)−1C0Classoµ

√
2(logd+ logTb)C

−1
0 .

Directly combining (EC.62) with (EC.60), we can show that∑
t/∈random

E[Rt,β∗(A∗t )−Rt,β∗(At)]
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≤
(
C̃tmp,1c

1
3 · ε
√
s(s+ ŝ) + C̃tmp,2

)∑
i

c
2i
3

+

(
C̃tmp,3

(
Ctmp,4c

1
6 ε

1
2 s

1
4

√
s+ ŝ+ 32

√
max
i
|Si|+m log

1
2 (T ) + 4

√
2ΓT

)√
max
i
|Si|+m

)∑
i

c
2i
3

=

(
C̃tmp,1c

1
3 ε
√
s(s+ ŝ) + C̃tmp,4c

1
6 ε

1
2 s

1
4

√
s+ ŝ

√
max
i
|Si|+m+ 32C̃tmp,3 log

1
2 (T )(max

i
|Si|+m)

)∑
i

c
2i
3

+

(
C̃tmp,2 + 4C̃tmp,3

√
2ΓT (max

i
|Si|+m)

)∑
i

c
2i
3

≤
(
C̃tmp,1c

1
3 ε
√
s(s+ ŝ) + C̃tmp,4c

1
6 ε

1
2 s

1
4 (s+ ŝ+ max

i
|Si|+m) + 32C̃tmp,3 log

1
2 (T )(max

i
|S|+m)

)∑
i

c
2i
3

+

(
C̃tmp,2 + 4C̃tmp,3

√
2ΓT (max

i
|Si|+m)

)∑
i

c
2i
3

≤
(
Ctmp,5 max{ε

√
s, ε

1
2 s

1
4 }
(
s+ ŝ+ max

i
|S|+m

)
+ C̃tmp,2 + 4C̃tmp,3

√
2ΓT (max

i
|Si|+m)

)
c|1− c 2

3 |−1T
2
3 ,

(EC.63)

where in last inequality we uses the formula of exponential series summation.

Random samples part: Since we use random decay sampling schedule, with high probability we have

T∑
t∈random

E[Rt,β∗(A∗t )−Rt,β∗(At)]≤RmaxnT ≤ 2C0T
2
3 . (EC.64)

Combining both non-random samples part and random samples part, i.e., (EC.64) and (EC.63), we can

upper bound the cumulative regret up to time T as follow:∑
t

E[Rt,β∗(A∗t )−Rt,β∗(At)]

≤
(
Ctmp,5 max{ε

√
s, ε

1
2 s

1
4 }
(
s+ ŝ+ max

i
|Si|+m

)
+ C̃tmp,2 + 4C̃tmp,3

√
2ΓT (max

i
|Si|+m)

)
c|1− c 2

3 |−1T
2
3 + 2C0T

2
3

(EC.65)

≤O
(

(s+ ŝ+ max{|S|}+m) log
1
2 d log

5
2 T ·T 2

3

)
,

where we choose ε= s−1/2 in the last inequality. Via Theorem 2, we know that maxi |Si| ≤ s+G0(T, s)/h(T ) =

s+ s
ŝ
≤ 2s, and then above result can be further simplified as

∑
t

E[Rt,β∗(A∗t )−Rt,β∗(At)]

≤
(
C̃f,1(3s+ ŝ+m) + C̃f,2 + C̃f,3

√
2s+m+ 2C0

)
T

2
3

=O
(
sm
√

logd ·T 2
3 log

5
2 T
)
, (EC.66)

where C̃f,1 =
cCtmp,5

|1−c
2
3 |

, C̃f,2 =
cC̃tmp,2

|1−c
2
3 |

, and C̃f,3 =
4cC̃tmp,3

√
2ΓT

|1−c
2
3 |

.

We then consider the probability part. Note that in previous proofs, we assume events Elasso(T ) for T and

Erp(m,d,1/2) hold for all products. The remaining task is to bound the probability that those two events

happen simultaneously. As we require C0 > 0, then when T ≥= (2 logT/(CC0))
3
2 , we have nT ≥O(s2 logT ).
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Using Lemma 1, we have

P(Elasso(T ))≥ 1−O(T−1). (EC.67)

Via Lemma 2 and union bound, we have

P(Erp(m,d,1/2))≥ 1− 2(NT )2 exp
(
−m

32

)
≥ 1− exp

(
−m

32
+ 2 log(2NT )

)
. (EC.68)

We then use the union bound over (EC.67) and (EC.68) and the desirable result follows:

P(Elasso(T )∩Erp(m,d,1/2))≥ 1− exp
(
−m

32
+ 2 log(2NT )

)
− exp

(
−m

8s
+ log(4 logT )

)
−O(T−1).

At last, the probability part follows directly by setting m=O (ŝ log(NT )).

EC.1.10. Proof of Corollary 2

The proof procedure is analogy to the proof of Theorem 5. We omit it for brevity.
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EC.2. Appendix: Technical Lemmas

EC.2.1. Proof of Lemma EC.1

We start with proving the first part of this lemma. By using the definition of x∗ and β, we can show that

Rβ(n) =Eβ

[
n∑
t=1

exp(βTx∗)

1 + exp(βTx∗)

]
−Eβ

[
n∑
t=1

exp(βTxt)

1 + exp(βTxt)

]

=Eβ

[
n

1 + exp(−(s− 1)ε)
−

n∑
t=1

1(xt ∈H)

1 + exp(−βTxt)
−

n∑
t=1

1(xt ∈ S)

1 + exp(−βTxt)

]

=Eβ

[
n

1 + exp(−(s− 1)ε)
− n

2
−

n∑
t=1

(
1(xt ∈H)

1 + exp(−βTxt)
− 1(xt ∈H)

2

)
−

n∑
t=1

(
1(xt ∈ S)

1 + exp(−βTxt)
− 1(xt ∈ S)

2

)]

=Eβ

[
n

2

(
1− exp(−(s− 1)ε)

1 + exp(−(s− 1)ε)

)
−

n∑
t=1

1(xt ∈H)

2

1− exp(−βTxt)
1 + exp(−βTxt)

.−
n∑
t=1

1(xt ∈ S)

2

1− exp(−βTxt)
1 + exp(−βTxt)

]

=Eβ

[
n

2
tanh

(
(s− 1)ε

2

)
−

n∑
t=1

1(xt ∈H)

2
tanh

(
βTxt

2

)
−

n∑
t=1

1(xt ∈ S)

2
tanh

(
βTxt

2

)]
.

Note that when ε is small enough, we have

1(xt ∈H)

2
tanh

(
βTxt

2

)
< 0.

Therefore, we can further show that

Rβ(n)≥Eβ

[
n

2
tanh

(
(s− 1)ε

2

)
−

n∑
t=1

1(xt ∈ S)

2
tanh

(
βTxt

2

)]

=Eβ

[
n∑
t=1

1(xt ∈H)

2
tanh

(
(s− 1)ε

2

)
+

n∑
t=1

1(xt ∈ S)

2

(
tanh

(
(s− 1)ε

2

)
− tanh

(
βTxt

2

))]

≥Eβ


n∑
t=1

1(xt ∈H)

2
tanh

(
(s− 1)ε

6

)
+

n∑
t=1

1(xt ∈ S)

2

(
tanh

(
(s− 1)ε

2

)
− tanh

(
βTxt

2

))
︸ ︷︷ ︸

(∗)

 ,
where the last inequality uses the fact that the tanh(·) function is monotonically increasing and tanh(0) = 0.

Applying the Taylor expansion on the (∗) term, we can show that

Rβ(n)≥Eβ

[
n∑
t=1

1(xt ∈H)

2
tanh

(
(s− 1)ε

6

)
+

n∑
t=1

1(xt ∈ S)

2

(s− 1)ε−βTxt
2(cosh(ξt) + 1)

]
,

where ξt is between βTxt and (s − 1)ε. By the construction of β and xt ∈ S, we can directly show that

(s− 1)ε/2−βTxt/2≥ 0. By picking ε to be small enough, we have cosh(ξt)∈ [1,2], which implies

Rβ(n)≥Eβ

[
n∑
t=1

1(xt ∈H)

2
tanh

(
(s− 1)ε

6

)
+

n∑
t=1

1(xt ∈ S)

2

(s− 1)ε−βTxt
6

]

≥Eβ

[
n∑
t=1

1(xt ∈H)

2
tanh

(
(s− 1)ε

6

)
+

n∑
t=1

1(xt ∈ S)

2

(
tanh

(
(s− 1)ε

6

)
− βTxt

6

)]

=Eβ

[
n

2
tanh

(
(s− 1)ε

6

)
−

n∑
t=1

1(xt ∈ S)

2

βTxt
6

]
,
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where the last inequality uses the fact that x > tanh(x) for all x≥ 0. Conditioning on the event E , we can

show that

Rβ(n)≥Eβ

[
n

2
tanh

(
(s− 1)ε

6

)
−

n∑
t=1

1(xt ∈ S)

2

βTxt
6

]

≥Eβ
[
n

2
tanh

(
(s− 1)ε

6

)
− n

4
tanh

(
(s− 1)ε

6

)]
Pβ(E)

≥ n

4
tanh

(
(s− 1)ε

6

)
Pβ(E). (EC.69)

Next, we will derive the second part of this Lemma. Denote x̃∗ as the optimal single-item assortment for

the assortment problem parameterized by the coefficient vector β̃. By similar analysis, we can show that

Rβ̃(n) =Eβ̃

[
n

2
tanh

(
2(s− 1)ε

2

)
−

n∑
t=1

1(xt ∈H) +1(xt ∈ S)

2
tanh

(
β̃Txt

2

)]

≥Eβ̃

n2 tanh

(
2(s− 1)ε

2

)
−

n∑
t=1

1(xt ∈ S)

2
tanh

(
β̃Txt

2

)
︸ ︷︷ ︸

(∗∗)

 .
Now, we will analyze the upper bound for the (∗∗) term:

(∗∗) =

n∑
t=1

1(xt ∈ S)

2
tanh

(
(β− 2εx̃)Txt

2

)

≤
n∑
t=1

1(xt ∈ S)

2
tanh

(
βTxt + 2ε

∑
j∈supp(x̃) |xt,j |
2

)

≤
n∑
t=1

1(xt ∈ S)

2
tanh

(∑s−1
j=1 |xt,j |ε+ 2ε

∑
j∈supp(x̃) |xt,j |

2

)
,

where these two inequalities use x̃ ∈ S ′ with ‖x̃‖∞ = 1, the definition of β and xt ∈ S. Note that by the

construction of S ′, the first (s− 1) elements in x̃ are zero, which implies that

s−1∑
j=1

|xt,j |+
∑

j∈supp(x̃)

|xt,j | ≤
d∑
j=1

|xt,j |= ‖xt‖1 = s− 1

⇒
s−1∑
j=1

|xt,j |ε+ 2ε
∑

j∈supp(x̃)

|xt,j | ≤ 2(s− 1)ε−
s−1∑
j=1

|xt,j |ε.

Therefore, we have

(∗∗)≤
n∑
t=1

1(xt ∈ S)

2
tanh

(
2(s− 1)ε−

∑s−1
j=1 |xt,j |ε

2

)
,

which leads to

Rβ̃(n)≥Eβ̃

[
n

2
tanh

(
2(s− 1)ε

2

)
−

n∑
t=1

1(xt ∈ S)

2
tanh

(
2(s− 1)ε−

∑s−1
j=1 |xt,j |ε

2

)]

≥Eβ̃

[
n∑
t=1

1(xt ∈ S)

2

(
tanh

(
2(s− 1)ε

2

)
− tanh

(
2(s− 1)ε−

∑s−1
j=1 |xt,j |ε

2

))]
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=Eβ̃

[
n∑
t=1

1(xt ∈ S)

2

∑s−1
j=1 |xt,j |ε

2(cosh(ξt) + 1)

]
, (EC.70)

where ξt is between 2(s−1)ε

2
and

2(s−1)ε−
∑s−1
j=1
|xt,j |ε

2
≥ (s−1)ε

2
> 0. Based on the monotonicity of the cosh(·)

function, we can show that

Rβ̃(n)≥Eβ̃

[
n∑
t=1

1(xt ∈ S)

2

(
∑s−1

j=1 |xt,j |+ 1)ε

2(cosh(2(s− 1)ε) + 1)

]

≥Eβ

[
n∑
t=1

1(xt ∈ S)

2

∑s−1
j=1 |xt,j |ε

2(cosh(2(s− 1)ε) + 1)

]

≥Eβ

[
n∑
t=1

1(xt ∈ S)
∑s−1

j=1 |xt,j |ε
12

]
,

where the last inequality holds when ε is small enough so that cosh(2(s− 1)ε) ∈ [1,2]. Conditioning on the

event Ec, we can show that

Rβ̃(n)≥Eβ̃

[
n∑
t=1

1(xt ∈ S)
∑s−1

j=1 xt,jε

12

]

≥Eβ̃

[
n∑
t=1

1(xt ∈ S)
∑s−1

j=1 xt,jε

12

]
Pβ̃(Ec)

≥n
4

tanh

(
(s− 1)ε

6

)
Pβ̃(Ec). (EC.71)

EC.2.2. Proof of Lemma EC.2

Via Lemma 15.1 in Lattimore and Szepesvári (2020), we can directly show that

KL
(
Pβ,Pβ̃

)
=

n∑
t=1

KL (P (xt), P
′(xt)) , (EC.72)

where P (a) and P ′(a) denote the Bernoulli distributions with success probability 1/(1 + exp(−βTa)) and

1/(1 + exp(−β̃Ta)) respectively. We first analyze KL (P (xt), P
′(xt)):

KL (P (xt), P
′(xt))

=
1

1 + exp(−xTt β)
log

(
1 + exp(−xTt β̃)

1 + exp(−xTt β)

)
+

exp(−xTt β)

1 + exp(−xTt β)
log

(
exp(−xTt β)(1 + exp(−xTt β̃))

exp(−xTt β̃)(1 + exp(−xTt β))

)

=
1

1 + exp(−xTt β)
log

(
1 + exp(−xTt β̃)

1 + exp(−xTt β)

)
+

exp(−xTt β)

1 + exp(−xTt β)
log

(
1 + exp(−xTt β̃)

1 + exp(−xTt β)

)
+

exp(−xTt β)

1 + exp(−xTt β)
log

(
exp(−xTt β)

exp(−xTt β̃)

)

= log

(
1 + exp(−xTt β̃)

1 + exp(−xTt β)

)
− exp(−xTt β)

1 + exp(−xTt β)
xTt (β− β̃)

= log

1 +

(∗∗∗)︷ ︸︸ ︷
exp(−xTt (β− 2εx̃))

1 + exp(−xTt β)

− exp(−xTt β)

1 + exp(−xTt β)
· 2xTt x̃ε.

By using Taylor expansion on the (∗ ∗ ∗) term, we can show that there exists a constant δx ∈ [0,1] such that

KL (P (xt), P (xt)
′) = log

(
1 + exp(−xTt β) + exp(−xTt (β− δx2εx̃)) · 2εxTt x̃

1 + exp(−xTt β)

)
− exp(−xTt β)

1 + exp(−xTt β)
· 2xTt x̃ε
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= log

(
1 +

exp(−xTt (β− δx2εx̃))2εxTt x̃

1 + exp(−xTt β)

)
− exp(−xTt β)

1 + exp(−xTt β)
· 2xTt x̃ε.

Then, by using the fact that log(1 +x)≤ x for x≥ 0, we have

KL (P (xt), P
′(xt))≤

exp(−xTt (β− δx2εxT x̃))2εxTt x̃

1 + exp(−xTt β)
− exp(−xTt β)

1 + exp(−xTt β)
· 2xTt x̃ε

=
exp(−xTt (β− δx2εx̃))− exp(−xTt β)

1 + exp(−xTt β)
2εxTt x̃

=
exp(−xTt (β− δ̃x2εx̃)) · 2δxεxTt x̃

1 + exp(−xTt β)
2εxTt x̃,

where δ̃x ∈ [0, δx]≤ 1. We can further show that

KL (P (xt), P (xt)
′)≤δx

exp(−xTt (β− δ̃x2εx̃))

1 + exp(−xTt β)

(
2εxTt x̃

)2
=δx

exp(−xTt β+ 2δ̃xx
T
t εx̃)

1 + exp(−xTt β)

(
2εxTt x̃

)2

=

≤1︷︸︸︷
δx exp(2ε

≤1︷︸︸︷
δ̃x

≤s−1︷︸︸︷
xTt x̃)

≤1︷ ︸︸ ︷
exp(−xTt β)

1 + exp(−xTt β)

(
2εxTt x̃

)2
≤ exp(2ε(s− 1))

(
2εxTt x̃

)2
≤12ε2

(
xTt x̃

)2
, (EC.73)

where the last inequality holds for a small enough ε. Combining (EC.72), (EC.73) and the definition of β̃,

we have

KL
(
Pβ,Pβ̃

)
≤12ε2

n∑
t=1

(
xTt x̃

)2
= 12ε2 min

z∈S′

n∑
t=1

(
xTt z

)2 ≤ 12ε2
1

|S ′|
∑
z∈S′

n∑
t=1

(
xTt z

)2
︸ ︷︷ ︸

(∗∗∗∗)

, (EC.74)

where the last inequality uses the fact that the minimum value is always no larger than its corresponding

average value. Next, we analyze the upper bound for the (∗ ∗ ∗∗) term:

(∗ ∗ ∗∗) =
∑
z∈S′

n∑
t=1

(
d∑
j=1

xt,jzj

)2

=
∑
z∈S′

n∑
t=1

[
d∑
j=1

(xt,jzj)
2

+ 2
∑
i<j

xt,jxt,izizj

]
.

We can bound the above two terms separately. Specifically, to bound the first term, we observe that∑
z∈S′

n∑
t=1

[
d∑
j=1

(xt,jzj)
2

]

=
∑
z∈S′

n∑
t=1

1(xt ∈ S)
d∑
j=1

(xt,jzj)
2

+
∑
z∈S′

n∑
t=1

1(xt ∈H)

d∑
j=1

(xt,jzj)
2

≤
n∑
t=1

1(xt ∈ S)
∑
z∈S′

d∑
j=1

(xt,jzj)
2

+
∑
z∈S′

n∑
t=1

1(xt ∈H)

d∑
j=1

(xt,jzj)
2
.
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Since xt and z are (s−1)-sparse, we have
∑d

j=1 (xt,jzj)
2 ≤ s−1. Note that only when xt and β are overlapping

on at least one dimension,
∑d

j=1 (xt,jzj)
2

will be nonzero. Therefore, we have

∑
z∈S′

d∑
j=1

(xt,jzj)
2 ≤

(
d− s− 1

s− 2

)
(s− 1)

⇒
n∑
t=1

1(xt ∈ S)
∑
z∈S′

d∑
j=1

(xt,jzj)
2 ≤

(
d− s− 1

s− 2

)
·n(s− 1).

In addition, since β is (s− 1)-sparse with 0 on its last dimension, we have

∑
z∈S′

n∑
t=1

1(xt ∈H)

d∑
j=1

(xt,jzj)
2 ≤

(
d− s
s− 1

) n∑
t=1

1(xt ∈H)(s− 1)κ2.

Therefore, we have∑
z∈S′

n∑
t=1

[
d∑
j=1

(xt,jzj)
2

]
≤
(
d− s− 1

s− 2

)
·n(s− 1) +

(
d− s
s− 1

)
·
n∑
t=1

1(xt ∈H)(s− 1)κ2.

Now, we bound the second term. Based on the symmetry construction of S ′ , we observe that∑
z∈S′

xt,jxt,izizj = 0

⇒
∑
z∈S′

n∑
t=1

2
∑
i<j

xt,jxt,izizj = 2
∑
i<j

n∑
t=1

∑
z∈S′

xt,jxt,izizj = 0.

Thus, we can show that∑
z∈S′

n∑
t=1

(xTt z)
2 ≤

(
d− s− 1

s− 2

)
·n(s− 1) +

(
d− s
s− 1

)
·
n∑
t=1

1(xt ∈H)(s− 1)κ2.

⇒ 1

|S ′|
∑
z∈S′

n∑
t=1

(xTt z)
2 ≤ n(s− 1)2

d− s
+

n∑
t=1

1(xt ∈H)(s− 1)κ2. (EC.75)

Combining (EC.75) and (EC.74), we have

KL
(
Pβ,Pβ̃

)
≤ 12ε2

(
n(s− 1)2

d− s
+

n∑
t=1

1(xt ∈H)(s− 1)κ2

)
.

EC.2.3. Proof of Lemma EC.3

To simplify the notation in this proof, we use ∇2L(ξ) to denote ∇2L(ξ|x,A), which can be re-written as

follows:

∇2L(ξ) =− 1

n

n∑
i=1

(
(
∑

k∈Ai
exp(xTk,iξ)xk,i)(

∑
k∈Ai

exp(xTk,iξ)x
T
k,i)

(
∑

k∈Ai
exp(xTk,iξ)

2
−
∑

k∈Ai
exp(xTk,iξ)xk,ix

T
k,i∑

k∈Ai
exp(xTk,iξ)

)

=− 1

n

n∑
i=1

∑
k1∈Ai

∑
k2∈Ai

exp(xTk1,iξ) exp(xTk2,iξ)xk1,ix
T
k2,i

(
∑

k∈Ai
exp(xTk,iξ)

2

+
1

n

n∑
i=1

∑
k1∈Ai

∑
k2∈Ai

exp(xTk2,iξ) exp(xTk1,iξ)xk1,ix
T
k1,i

(
∑

k∈Ai
exp(xTk,iξ))

2

=− 1

n

n∑
i=1

∑
k1,k2

exp(xTk2,iξ) exp(xTk1,iξ)xk1,i(xk2,i−xk1,i)
T

(
∑

k∈Ai
exp(xTk,iξ))

2
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=
1

n

n∑
i=1

∑
k1,k2

Φi(k1, k2),

where we use Φi(k1, k2) to denote the following shorthand:

Φi(k1, k2) :=−
exp(xTk2,iξ) exp(xTk1,iξ)xk1,i(xk2,i−xk1,i)

T

(
∑

k∈Ai
exp(xTk,iξ))

2

Further, we denote φi(k1, k2) :=
exp(xTk2,i

ξ) exp(xTk1,i
ξ)

(
∑
k∈Ai

exp(xT
k,i
ξ))2

. Hence, when k1 6= k2, we have

Φi(k1, k2) + Φi(k2, k1) =−
exp(xTk2,iξ) exp(xTk1,iξ)(xk1,i(xk2,i−xk1,i)

T +xk2,i(xk1,i−xk2,i)T )

(
∑

k∈Ai
exp(xTk,iξ))

2

=−φi(k1, k2)(xk1,i(xk2,i−xk1,i)T +xk2,i(xk1,i−xk2,i)T ),

Then, for any z ∈Rd, we have

zT (Φi(k1, k2) + Φi(k2, k1))z

φi(k1, k2)
=−zT (xk1,i(xk2,i−xk1,i)T +xk2,i(xk1,i−xk2,i)T )z

=−
(
zTxk1,ix

T
k2,i

z− zTxk1,ixTk1,iz+ zTxk2,ix
T
k1,i

z− zTxk2,ixTk2,iz
)

=−
(
−‖zTxk1,i‖2−‖zTxk2,i‖2 + 2〈zTxk1,i, zTxk2,i

)
〉

= ‖zT (xk1,i−xk2,i)‖2 ≥ 0

Further, we can show that

zT∇2L(ξ)z =
1

n

∑
i

∑
k1,k2

zTΦi(k1, k2)z

=
1

n

∑
i

∑
k1<k2

φi(k1, k2)‖zT (xk1,i−xk2,i)‖2

⇒∇2L(ξ) =
1

n

∑
i

∑
k1<k2

φi(k1, k2)(xk2,i−xk2,i)(xk2,i−xk2,i)T

⇒∇2L(ξ) =
1

n

∑
i

∑
k1<k2

yk1,k2,iy
T
k1,k2,i

, (EC.76)

where we set yk1,k2,i =
√
φi(k1, k2)(xk1,i− xk2,1). By the definition of φi(k1, k2), we know that ‖yk1,k2,i‖∞ ≤

2xmax := ymax. Let K = ymax, σ0 =
√

2ymax, we can verify the follow inequalitys hold

K2
(
E[exp(y2

k1,k2,i,j/K
2)− 1]

)
≤ y2

max(e− 1)≤ σ2
0 , (EC.77)

where yk1,k2,i,j is the j-th element of yk1,k2,i. Then, via the exercise 14.3 in Bühlmann and Van De Geer

(2011), we have the following inequality for t > 0:

P


∥∥∥∥∥ 2

nK(K − 1)

∑
i

∑
k1<k2

yk1,k2,iy
T
k1,k2,i

−E[yk1,k2,iy
T
k1,k2,i

]

∥∥∥∥∥
∞

≥ 2y2
maxt+ 4z2

max

√
t+
√

8y2
maxλ

(√
2

2
, n,

(
d

2

))}
≤ exp

(
−1

2
nK(K − 1)t

)
, (EC.78)

where

λ

(√
2

2
, n,

(
d

2

))
=

√
2 log(d(d− 1))

n
+
ymax log(d(d− 1))

n
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Note that when t < 1 and n≥ logd/t, we will have the following inequalities:

2y2
maxt+ 4y2

max

√
t≤ 6y2

max

√
t

√
8y2

maxλ

(√
2

2
, n,

(
d

2

))
≤
√

8y2
max

(√
4 logd

n
+

2ymax logd

n

)
≤ 4
√

2y2
max(1 + ymax)

√
t.

Combining these two inequalities, we have

2y2
maxt+ 4y2

max

√
t+
√

8y2
maxλ

(√
2

2
, n,

(
d

2

))
≤ 2y2

max(3 + 2
√

2(1 + ymax))
√
t. (EC.79)

When t=
(

κ

64sy2max(3+2
√

2(1+ymax))

)2

=
(
κ/256sx2

max(3 + 2
√

2(1 + 2xmax)
)2

, we have

2y2
max(3 + 2

√
2(1 + ymax))

√
t=

κ

32s
. (EC.80)

Via (EC.78), (EC.79) and (EC.80), with probability 1− exp( 1
2
nK(K − 1)t) we have∥∥∥∥∥ 2

nK(K − 1)

∑
i

∑
k1<k2

yk1,k2,iy
T
k1,k2,i

−E[yk1,k2,iy
T
k1,k2,i

]

∥∥∥∥∥
∞

≤ κ

23s
. (EC.81)

Then, via the Corollary 6.8 in Bühlmann and Van De Geer (2011), when Assumption A.2 holds, then (EC.81)

leads the following result

‖uS‖21 ≤
s

κ/2
uT

[
2

nK(K − 1)

∑
i

∑
k1<k2

yk1,k2,iy
T
k1,k2,i

]
u

⇒‖uS‖21 ≤
4s

K(K − 1)κ
uT∇2L(ξ)u, (EC.82)

where last inequality uses (EC.76).

Hence, when choosing C = 1
2
K(K − 1)

(
κ/256sx2

max(3 + 2
√

2(1 + 2xmax)
)2

, then with probability 1 −

exp(−Cn), we have

uT∇2(ξ|x,A)u≥ K(K − 1)κ

4s
‖uS‖21,

where ‖uSC‖1 ≤ 3‖uS‖. The remaining of this lemma follows directly by using n> logT/C.

EC.2.4. Proof of Lemma EC.4

We start with showing that the expectation of ∇ log(pβ∗,A(j)) among all possible choice j ∈ A is 0, i.e.,

Ej∈A[∇ log(pβ∗,A(j))] = 0.

EjA[∇ log(pβ∗,A(j))] =
1

n

∑
j∈At

pβ∗,A(j)∇ log(pβ∗,A(j))

=
∑
j∈At

pβ∗,A(j) · 1

pβ∗,A(j)
∇pβ∗,A(j)

=
∑
j∈At

∇pβ∗,A(j)

=
∑
j∈At

∇

(
exp(xTj β

∗)∑
i∈At exp(xTi β

∗)

)
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=
∑
j∈At

(
exp(xTj β

∗)xj∑
i∈At exp(xTi β

∗)
−

exp(xTj β
∗)
∑

i∈At exp(xTi β
∗)xi

(
∑

i∈At exp(xTi β
∗))2

)

=

∑
j∈At exp(xTj β

∗)xj∑
i∈At exp(xTi β

∗)
−
∑

j∈At exp(xTj β
∗) ·
∑

i∈At exp(xTi β
∗)xi

(
∑

i∈At exp(xTi β
∗))2

=

∑
j∈At exp(xTj β

∗)xj∑
i∈At exp(xTi β

∗)
−
∑

i∈At exp(xTi β
∗)xi∑

i∈At exp(xTi β
∗)

= 0

Combining with the fact that ∇ log(pβ∗,A(j)) is element-wise bounded by xmax, we can conclude that every

dimension of ∇ log(pβ∗,A(j)) is a zero mean x2
max-subgaussian random variable and that ∇L(β) is the finite

average of zero mean i.i.d subgaussian random vector, i.e.,∇L(β∗) = 1
n

∑
t
∇ log(pβ∗,A(ct)).

Via Hoeffding inequality, for any ε > 0, we have

P

(∣∣∣∣∣∑
t

∇i log(pβ∗,A(ct))

∣∣∣∣∣≥ ε
)
≤ 2 exp

(
− ε2

2nx2
max

)
, (EC.83)

where ∇i log(qβ∗(ct)) is the i-th dimension of ∇ log(qβ∗(ct)). Hence, via union bound, we have

P

(∥∥∥∥∥∑
t

∇ log(pβ∗,A(ct))

∥∥∥∥∥
∞

≥ ε

)
≤ 2d exp

(
− ε2

2nx2
max

)
⇒P (‖∇L(β∗|x,A)‖∞ ≥ ε/n)≤ 2 exp

(
− ε2

2nx2
max

+ log(d)

)
.

If we set ε=
√

2nx2
max(logd+ logT ), then

⇒P

(
‖∇L(β∗|x,A)‖∞ ≥

√
2nx2

max(logd+ logT )

n

)
≤ 2

T

⇒P

(
‖∇L(β∗|x,A)‖∞ ≥

√
2x2

max(logd+ logT )

n

)
≤ 2

T
.

EC.2.5. Proof of Lemma EC.5

By standard covering number arguments (e.g., van de Geer, 2000), an ε covering set H(ε) for ‖θ−θ0‖ ≤ δ has

a finite elements upper bounded by exp((|S|+m) log(3δ/ε)). As we require event E2(m,T ), δ ≤ ρ

8Kxmax
and

G1(m,T, ε)≤ ρ

8Kxmax
, via Lemma EC.6 and the union bound, any θ ∈H(ε), we can show that the following

inequality holds with probability 1− δ4 · exp((|S|+m) log(3δ/ε)):∣∣∣∣∣
T∑
t=1

[f̂t(θ)− fAt(θ)]

∣∣∣∣∣≤ 2

3
log(1/δ4) + 3

√√√√log(1/δ4)

T∑
i=1

fAt(θ) (EC.84)

If we set δ4 = exp(−(|S|+m) log(3δ/ε)− logT ) and ε= 1
2
δ, the above inequality directly suggests that the

following result holds with probability 1−T−1:∣∣∣∣∣
T∑
t=1

[f̂t(θ)− fAt(θ)]

∣∣∣∣∣≤ 2

3
((|S|+m) log(6) + log(T )) + 3

√√√√((|S|+m) log(6) + log(T ))

T∑
i=1

fAt(θ)

≤ 2

3
(2(|S|+m) + 1) log(T ) + 3

√√√√(2(|S|+m) + 1) log(T )

T∑
i=1

fAt(θ), (EC.85)
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where last inequality we uses T ≥ 2 in Lemma statement.

Next, we will bound the term |
∑

t fAt(θ̂)|:

|
∑
t

fAt(θ̂)|=
∑
t

fAt(θ̂)

=
∑
t

fAt(θ̂)−
∑
t

f̂t(θ̂) +
∑
t

f̂t(θ̂)

≤|
∑
t

f̂t(θ̂)−
∑
t

fAt(θ̂)|+ max

{
0,
∑
t

f̂t(θ̂)

}
, (EC.86)

where the first equality uses the fact that fAt(·)≥ 0.

Let ΓT := max
{

0,
∑

t f̂t(θ̂)
}

and x=
√∑

t
fAt(θ̂). We combine (EC.85) and (EC.86) to show that x2, or

equivalently |
∑

t
fAt(θ̂)|, can be bounded as follows with probability 1−O(T−1):

x2 ≤ 2

3
(2(|S|+m) + 1) log(T ) + 3

√
(2(|S|+m) + 1) log(T ) ·x+ ΓT

⇒ x2− 3
√

(2(|S|+m) + 1) log(T ) ·x− (ΓT +
2

3
(2(|S|+m) + 1) log(T ))≤ 0. (EC.87)

Note that the inequality (EC.87) can be viewed as a quadratic function in x. Hence, we can solve for the

upper bound of x:

x≤
3
√

(2(|S|+m) + 1) log(T ) +
√

9(2(|S|+m) + 1) log(T ) + 4(ΓT + 2
3
(2(|S|+m) + 1) log(T ))

2

=
3
√

(2(|S|+m) + 1) log(T ) +
√

(9 + 8/3)(2(|S|+m) + 1) log(T ) + 4ΓT
2

<
3
√

(2(|S|+m) + 1) log(T ) + 4
√

(2(|S|+m) + 1) log(T ) + 2
√

ΓT
2

(EC.88)

≤ 7

2

√
(2(|S|+m) + 1) log(T ) +

√
ΓT

⇒
√∑

t

fAt(θ̂)≤ 4
√

(2(|S|+m) + 1) log(T ) +
√

ΓT

⇒
∑
t

fAt(θ̂)≤ 32(2(|S|+m) + 1) log(T ) + 2ΓT , (EC.89)

where in (EC.88) we first enlarge (9+8/3) to 16 and then uses the fact that
√
a2 + b2 ≤ a+ b for a, b≥ 0, and

in (EC.89) we uses the fact that (a+ b)2 ≤ 2a2 + 2b2 for all a, b∈R. The remaining part follows by combing

above results with Lemma EC.7.

EC.2.6. Lemma EC.6

Lemma EC.6. Denote the empirical version f̂t(θ) = log(pQTPT0 θ(ct)/pβ∗(ct)) for t > 0. If event E2(m,T )

holds and max{‖θ−P0Qβ
∗‖,G1(m,T, ε)} ≤ ρ

8Kxmax
, then with probability 1− δ4 we have∣∣∣∣∣∑

t

[f̂t(θ)− fAt(θ)]

∣∣∣∣∣≤ 2

3
log(1/δ4) + 3

√√√√log(1/δ4)

T∑
i=1

fAt(θ). (EC.90)

Proof. We can construct a Doob’s martingale {M(i), i= 0,1,2, ..., T} as follow

M(i) =E

[∑
t

f̂t(θ)|Hi

]
, i= 1,2, ...T (EC.91)
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Using Bernstein’s inequality, we can show that for ε > 0,

P (|M(T )−M(0)| ≥ t)≤ exp

(
− t2

2k+ 2t/3

)
⇒P

(∣∣∣∣∣∑
t

[f̂t(θ)− fAt(θ)]

∣∣∣∣∣≥ ε
)
≤ exp

(
− ε2

2k+ 2ε/3

)
, (EC.92)

where k≥
∑T

i=1 V ar[M(i)−M(i− 1)|Hi−1]. Next, we will upper bound k.

First, we show that the mean different is zero:

E[M(i)−M(i− 1)|Hi−1]

=E

[
E[
∑
t

f̂t(θ)|Hi]−E[
∑
t

f̂t(θ)|Hi−1]

]
=E[

∑
t

f̂t(θ)]−E[
∑
t

f̂t(θ)] = 0.

As E[M(i)−M(i− 1)|Hi−1] = 0, we can show that

V ar[M(i)−M(i− 1)|Hi−1]

=E[(M(i)−M(i− 1)|Hi−1)2]

=E[(f̂i(θ)− fAi(θ))
2]

=E[f̂i(θ)
2]− fAi(θ)

2,

where the second-to-last equality follows from the fact that E[f̂i(θ)] = fAt(θ). As we have 2x2 > log2(1 + x)

for all x>−1/2. Then, when (pQTPT0 θ(j)− pβ∗(j))/(pβ∗(j))≥−1/2 holds for all j ∈At, we have

E[f̂t(θ)
2] =

∑
j∈At

pβ∗(j)

(
log

(
pQTPT0 θ(j)

pβ∗(j)

))2

=
∑
j∈At

pβ∗(j)

(
log

(
1 +

pQTPT0 θ(j)− pβ∗(j)
pβ∗(j)

))2

≤ 2
∑
j∈At

(pQTPT0 θ(j)− pβ∗(j))
2

pβ∗(j)

In addition, we can also show that

fAt(θ) =
∑
j∈At

pβ∗(j) log

(
pQTPT0 θ(j)

pβ∗(j)

)

=
∑
j∈At

pβ∗(j)

pQTPT0 θ(j)− pβ∗(j)
pβ∗(j)

− 1

2(ξj)2

(
pQTPT0 θ(j)− pβ∗(j)

pβ∗(j)

)2
 (EC.93)

=
∑
j∈At

(pQTPT0 θ(j)− pβ∗(j)) +
∑
j

1

2(ξj)2

(pQTPT0 θ(j)− pβ∗(j))
2

pβ∗(j)
(EC.94)

=
∑
j∈At

1

2(ξj)2

(pQTPT0 θ(j)− pβ∗(j))
2

pβ∗(j)2

≥ 1

2 maxj(ξj)2

∑
j∈At

pβ∗(j)
(pQTPT0 θ(j)− pβ∗(j))

2

pβ∗(j)2
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≥ 1

2 maxj(ξj)2
E[f̂t(θ)

2], (EC.95)

where (EC.93) uses the Taylor’s expansion of log(a) at a= 1 and (EC.94) uses
∑

j
pβ∗(j) =

∑
j
pQTPT0 θ(j) = 1.

We then analyze the value of ξj . Since we expend the log(a) function at a= 1, there exists an αj such that

ξj = αj + (1−αj)
pQTPT0 θ(j)

pβ∗(j)

= 1 + (1−α)
pQTPT0 θ(j)− pβ∗(j)

pβ∗(j)
.

Claim: If max{‖θ−P0Qβ
∗‖,G1(m,T, ε)} ≤ ρ

8Kxmax
, then − 1

2
≤

p
QTPT0 θ

(j)−pβ∗ (j)

pβ∗ (j)
≤ 1

2
for all j.

|pβ∗(j)− pQTPT0 θ(j)|= |pβ∗(j)− pΣβ∗(j) + pΣβ∗(j)− pQTPT0 θ(j)|

≤ |pΣβ∗(j)− pQTPT0 θ(j)|+ |pβ∗(j)− pΣβ∗(j)|

≤ ‖∇pν1(j)‖‖QTP0θ−Σβ∗‖+ ‖∇pν2(j)‖‖β∗−Σβ∗‖, (EC.96)

where ν1 and ν2 are in between {QTP0θ,Σβ
∗} and {β∗,Σβ∗} respectively. We now analyze the upper bound

of ‖∇pξ(j)‖ as follow

∇pν(j) =
exp(xTj ν)xj∑

exp(xTν)
−

exp(xTj ν)
∑

exp(xTν)x

(
∑

exp(xTν))2

= pν(j)
∑
i∈At

(xj − pν(i)xi)

⇒‖∇pν(j)‖ ≤ 2Kxmax, (EC.97)

Combining (EC.96), (EC.97), event E2(m,T ) and max{‖θ−P0Qβ
∗‖,G1(m,T, ε)} ≤ ρ

8Kxmax
, then we have

|pβ∗(j)− pQTPT0 θ(j)|= | ≤ 2Kxmax‖θ−P0Qβ
∗‖+ 2Kxmax‖(Σ− I)β∗‖

≤ 2Kxmax ·
ρ

8Kxmax

+ 2KxmaxG1(m,T, ε)

≤ ρ

4
+ 2Kxmax

ρ

8Kxmax

≤ ρ

2
≤ 1

2
pβ∗(j)

⇒
|pQTPT0 θ(j)− pβ∗(j)|

pβ∗(j)
≤ 1

2

⇒− 1

2
≤
pQTPT0 θ(j)− pβ∗(j)

pβ∗(j)
≤ 1

2
,

which proves the Claim. Hence, if we have (pQTPT0 θ(j)− pβ∗(j))/pβ∗(j)≤ 1/2, then we can show that

ξj ≤ 1 +
1

2
=

3

2
⇒ 2 max

j
(ξ)2 ≤ 9

2
.

Therefore, if we set k as follows:

k=

T∑
i=1

9

2
fAt(θ)≥

T∑
i=1

E[f̂i(θ)]≥
T∑
i=1

V ar[M(i)−M(i− 1)|Hi−1]
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then from EC.92, we have

P

(∣∣∣∣∣∑
t

[f̂t(θ)− fAt(θ)]

∣∣∣∣∣≥ ε
)
≤ exp

(
− ε2

9
∑T

i=1 fAt(θ) + 2ε/3

)
. (EC.98)

Finally, to ensure P
(∣∣∣∑t

[f̂t(θ)− fAt(θ)]
∣∣∣≥ ε)≤ δ, we can set δ4 = exp

(
− ε2

9
∑T
i=1 fAt (θ)+2ε/3

)
. We then solve

for the ε.

δ4 = exp

(
− ε2

9
∑T

i=1 fAt(θ) + 2ε/3

)

log(1/δ4) =
ε2

9
∑T

i=1 fAt(θ) + 2ε/3

log(1/δ4)(9

T∑
i=1

fAt(θ) + 2ε/3) = ε2

ε2− 2

3
log(1/δ4)ε− 9 log(1/δ4)

T∑
i=1

fAt(θ) = 0

⇒
2
3

log(1/δ4) +
√

( 2
3

log(1/δ4))2 + 36 log(1/δ4)
∑T

i=1 fAt(θ)

2
= ε

⇒
2
3

log(1/δ4) + 2
3

log(1/δ4) + 6
√

log(1/δ4)
∑T

i=1 fAt(θ)

2
≥ ε

⇒ 2

3
log(1/δ4) + 3

√√√√log(1/δ4)

T∑
i=1

fAt(θ)≥ ε.

The Lemma follows directly by plugging the last inequality back to EC.98.

EC.2.7. Lemma EC.7

Lemma EC.7. Let δ = ‖θ − P0Qβ
∗‖ and 2 be a positive constant. If events E2(m,T ) and Erp(m,d,1/2)

hold and δ≤ 3
4
nT µ

TL3
, then the following inequality holds

∑
t

fAt(θ)≥
1

4
(θ−P0Qβ

∗)T

(∑
t

∇2fAt(P0Qβ
∗)

)
(θ−P0Qβ

∗)

− 4x2
maxTG1(m,T, ε)δ. (EC.99)

Proof. We first expend
∑

t fAt(θ) at P0Qβ
∗.

∑
t

fAt(θ)≥

a©︷ ︸︸ ︷∑
t

fAt(P0Qβ
∗) +

b©︷ ︸︸ ︷∑
t

∇fAt(P0Qβ
∗)T (θ−P0Qβ

∗)

+

c©︷ ︸︸ ︷
1

2
(θ−P0Qβ

∗)T

(∑
t

∇2fAt(P0Qβ
∗)

)
(θ−P0Qβ

∗)− 1

6

∑
t

L3‖θ−P0Qβ
∗‖3 . (EC.100)

We will derive the lower bounds for these three parts in equation (EC.100).

Lower bound for a©. Since
∑

t fAt(P0Qβ
∗) can be viewed as KL-Divergence, we have

fAt(P0Qβ
∗)≥ 0. (EC.101)
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Lower bound for b©. Via Cauchy inequality we have:

∇fAt(P0Qβ
∗)T (θ−P0Qβ

∗)≥−‖∇fAt(P0Qβ
∗)‖‖θ−P0Qβ

∗‖=−‖∇fAt(P0Qβ
∗)‖δ. (EC.102)

The remaining task is to find the bound for ‖∇fAt(P0Qβ
∗)‖.

Claim: ‖∇fAt(P0Qβ
∗)‖ ≤ 6K2x2

maxG1(m,T, ε) holds for all t.

∇fAt(P0Qβ
∗) =

∑
j∈At

pβ∗(j)
pΣβ∗(j)

∇pΣβ∗(j)

=
∑
j∈At

pβ∗(j)
pΣβ∗(j)

(
∑

exp(xTΣβ∗)) exp(xTj Σβ∗)P0Qxj

(
∑

exp(xTΣβ∗))2

−
∑
j∈At

pβ∗(j)
pΣβ∗(j)

exp(xTj Σβ∗)
∑

exp(xTΣβ∗)P0Qx

(
∑

exp(xTΣβ∗))2

=
∑
j∈At

pβ∗(j)
pΣβ∗(j)

pΣβ∗(j)P0Qxj

−
∑
j∈At

pβ∗(j)
pΣβ∗(j)

pΣβ∗(j)
∑

exp(xTΣβ∗)P0Qx∑
exp(xTΣβ∗)

=
∑
j∈At

pβ∗(j)P0Qxj −
∑
j∈At

pβ∗(j)
∑
j∈At

pΣβ∗(j)P0Qxj

=
∑
j∈At

pβ∗(j)

(
P0Qxj −

∑
i∈At

pΣβ∗(i)P0Qxi

)
=
∑
j∈At

(pβ∗(j)− pΣβ∗(j))P0Qxj

=
∑
j∈At

∇pξ(j)T (β∗−Σβ∗)P0Qxj , (EC.103)

where ξ is on the line between β∗ and Σβ∗.

We can show that

∇pξ(j) =
exp(xTj ξ)xj∑

exp(xT ξ)
−

exp(xTj ξ)
∑

exp(xT ξ)x

(
∑

exp(xT ξ))2

= pξ(j)
∑
i∈At

(xj − pξ(i)xi)

⇒‖∇pξ(j)‖ ≤ 2Kxmax,

where we use the fact that 0≤ pξ(j)≤ 1 for all j ∈At. Via event E2(m,T ), we have

‖∇fAt(P0Qβ
∗)‖= ‖

∑
j∈At

∇pξ(j) (β∗−Σβ∗)P0Qxj‖ ≤K · 2Kxmax · ‖β∗−Σβ∗‖max
j∈At
‖P0Qxj‖

= 2K2xmaxG1(m,T, ε) max
j∈At
‖P0Qxj‖.

To prove the Claim, we finally need to bound ‖P0Qxj‖ with ‖xj‖. Let x̃j =Qxj .

‖P0Qxj‖= ‖P0x̃j‖

=

∥∥∥∥(I P
) (

x̃j1
x̃j2

)∥∥∥∥
=

∥∥∥∥( x̃j1
Px̃j2

)∥∥∥∥≤ ‖x̃j1‖+ ‖Px̃j2‖.
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As event Erp(m,d,1/2) holds, we have ‖Px̃j2‖ ≤ (1+1/2)‖x̃j2‖ ≤ 2‖x̃j2‖. Combining this result with the fact

that Q is a permutation matrix that won’t change the scale of xj , we have

‖P0Qxj‖ ≤ 3xmax

holds with high probability. Therefore, we have

‖∇fAt(P0Qβ
∗)‖ ≤ 2KxmaxG1(m,T, ε) max

j∈At
‖P0Qxj‖ ≤ 6K2x2

maxG1(m,T, ε),

which proves the Claim.

Thus, applying this Claim for all t, we have

‖
∑
t

∇fAt(P0Qβ
∗)‖ ≤ 6TK2x2

maxG(T )

⇒
∑
t

∇fAt(P0Qβ
∗)T (θ−P0Qβ

∗)≥−6TK2x2
maxG(T )δ. (EC.104)

Bound for c© By Lemma EC.8 and Assumption A.3, with probability 1−O(1/T ) we have

1

2
(θ−P0Qβ

∗)T

(∑
t

∇2fAt(P0Qβ
∗)

)
(θ−P0Qβ

∗)

≥ 1

2
(θ−P0Qβ

∗)T

(∑
t∈WR

∇2fAt(P0Qβ
∗)

)
(θ−P0Qβ

∗)

≥ 1

4
µnT‖θ−P0Qβ

∗‖2. (EC.105)

Since we require δ≤ 3
4
nT µ

TL3
, we can further show that

1

6
L3‖θ−P0Qβ

∗‖3 ≤ nTµ

8T
‖θ−P0Qβ

∗‖2

≤ 1

4T
(θ−P0Qβ

∗)T

(∑
t

∇2fAt(P0Qβ
∗)

)
(θ−P0Qβ

∗)

⇒1

2
(θ−P0Qβ

∗)T

(∑
t

∇2fAt(P0Qβ
∗)

)
(θ−P0Qβ

∗)− 1

6

∑
t

L3‖θ−P0Qβ
∗‖3

≥ 1

4
(θ−P0Qβ

∗)T

(∑
t

∇2fAt(P0Qβ
∗)

)
(θ−P0Qβ

∗). (EC.106)

EC.2.8. Lemma EC.8

Lemma EC.8. Under Assumption A.3, for all feasible θ in the projected space, if nT = O(2(|S| +

m)2(logT − log(|S|+m))), then with probability at least 1−O(1/T ), we have

T∑
t=1

∇2f(θ)� 1

2
µnT I.

Proof. Since ∇2f(θ̂) is always positive semidefinite, we will have

T∑
t=1

∇2f(θ̂)�
∑
i∈WR

∇2f(θ̂).
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From Lemma EC.10, we have

∇2f(θ̂) = Ẽ

[(
z− Ẽ[z]

)(
z− Ẽ[z]

)T]
� Ẽ[zzT ]� (|S|+m)z2

maxI. (EC.107)

Combining this inequality with the fact that 1) i ∈WR are i.i.d random sample and 2) ∇2f(θ̂) is always

positive semidefinite, we can use the Matrix Chernoff inequalities to show that

P

(
λmin

(
T∑

i∈WR

∇2f(θ̂)

)
≤ (1− δ)µmin

)
≤ (|S|+m)

(
e−δ

(1− δ)1−δ

)µmin/R

, (EC.108)

where µmin ≤ λmin

(∑T

i∈WR
E[∇2f(θ̂)]

)
and R ≥ λmax(∇2f(θ̂)). Under assumption A.3, we can show that

λmin

(∑T

i∈WR
E[∇2f(θ̂)]

)
≥ nTµ. Based on (EC.107), we can show that ∇2f(θ̂)� (|S|+m)z2

maxI. Hence, we

set µmin = nTµ and R= (|S|+m)z2
max.

Moreover, if we pick δ = 1/2, we then have

P

(
λmin

(
T∑

i∈WR

∇2f(θ̂)

)
≤ 1

2
nTµ

)
≤ (|S|+m)

(
e−1/2

(1/2)1/2

)nT µ/(|S|+m)z2max

= (|S|+m)
(e

2

)−nT µ/2(|S|+m)z2max

= (|S|+m)
(e

2

)− nT µ

2(|S|+m)z2max .

The remaining part of this lemma follows directly by using nT & 2(|S|+m)z2max(logT−log(|S|+m))

µ log(e/2)
.

EC.2.9. Lemma EC.9

Lemma EC.9. Let Bt = (
∑t

i∇2fAi(P0Qβ
∗))−1/2∇2fAt(P0Qβ

∗)(
∑

t∇2f(P0Qβ
∗))−1/2. Under Assump-

tions A.1, A.2, and A.3, with probability 1−O(1/T ), we have

T∑
t=T0+1

min{1,‖Bt‖op} ≤ 2(|S|+m) log

(
8TK2x2

max

µnT0

)
. (EC.109)

Proof. Denote the eigenvalue as σ1(Bt)≥ σ2(BT )≥ ...≥ 0 and we can show that

T∑
t=T0+1

∇2f(P0Qβ
∗) =

T−1∑
t=T0+1

∇2f(P0Qβ
∗) +∇2fAt(P0Qβ

∗)

= (

T−1∑
t=T0+1

∇2f(P0Qβ
∗))1/2(I +BT )(

T−1∑
t=T0+1

∇2f(P0Qβ
∗))1/2

⇒ log

(
det
∑T

t=T0+1∇2f(P0Qβ
∗)

det
∑T−1

t=T0+1∇2f(P0Qβ∗)

)
=
∑
j

log(1 +σj(BT ))≥ log(1 +σ1(BT )),

Together with the observation that 2 log(1 +x)≥ x for x∈ (0,1], we can show the following inequality holds:

min{1,‖BT‖op} ≤ 2 log(1 + ‖Bt‖op)

= 2 log(1 +σ1(Bt))

≤ 2 log

(
det
∑T

t=T0+1∇2f(P0Qβ
∗)

det
∑T−1

t=T0+1∇2f(P0Qβ∗)

)
(EC.110)
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Therefore, we can prove that

T∑
t=T0+1

min{1,‖Bt‖op} ≤ 2 log

(
det
∑T

t=1∇2f(P0Qβ
∗)

det
∑T0+1

t=1 ∇2f(P0Qβ∗)

)
.

From Lemma EC.8, we can show with probability 1−O(1/T ), the following inequality holds:

T∑
t

∇2f(P0Qβ
∗)� 1

2
µnT .

Then, following the similar procedures as in (EC.76) in Lemma EC.3, we can show that

T∑
t

∇2f(P0Qβ
∗)� 4TK2x2

max.

Hence,

2 log

(
det
∑T

t=1∇2f(P0Qβ
∗)

det
∑T0+1

t=1 ∇2f(P0Qβ∗)

)
≤ 2(|S|+m) log

(
8TK2x2

max

µnT0

)

⇒
T∑

t=T0+1

min{1,‖Bt‖op} ≤ 2(|S|+m) log

(
8TK2x2

max

µnT0

)
.

EC.2.10. Lemma EC.10

Lemma EC.10. ∇2fA(θ̂) = Ẽ

[(
z− Ẽ[z]

)(
z− Ẽ[z]

)T]
.

Proof. We first consider the gradient of fA(θ):

∇fA(θ) =
∑
j∈A

pΣβ∗,A(j)
∇pQTPT0 θ,A(j)

pQTPT0 θ,A(j)
. (EC.111)

Then, we compute the term ∇pQTPT0 θ,A(j):

∇pQTPT0 θ,A(j) =
(
∑

i∈A exp(zTi θ) exp(zTj θ)zj − exp(zTj θ)
∑

i∈A exp(zTi θ)zi

(
∑

i∈A exp(zTi θ))
2

=
exp(zTj θ)zj∑
i∈A exp(zTi θ)

−
exp(zTj θ)∑
i∈A exp(zTi θ)

·
∑
i∈A

exp(zTi θ)zi∑
i∈A exp(zTi θ)

= pQTPT0 θ,A(j)zj − pQTPT0 θ,A(j)
∑
i∈A

pQTPT0 θ,A(i)zi,

which implies that
∇p

QTPT0 θ,A
(j)

p
QTPT0 θ,A

(j)
= zj −

∑
i∈A pQTPT0 θ,Azi. Combining it with (EC.111), we will have

∇fA(θ) =
∑
j∈A

pΣβ∗,A(j)

(
zj −

∑
i∈A

pQTPT0 θ,Azi

)
=
∑
j∈A

pΣβ∗,A(j)zj −
∑
j∈A

pΣβ∗,A(j)
∑
i∈A

pQTPT0 θ,Azi

=
∑
j∈A

pΣβ∗,A(j)zj −
∑
i∈A

pQTPT0 θ,Azi.

Therefore, we can show that

∇2fA(θ) =
∑
i∈A

∇pQTPT0 θ,A(i)zTi
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=
∑
i∈A

pQTPT0 θ,A(i)ziz
T
i −

∑
i∈A

pQTPT0 θ,A(i)
∑
k∈A

pQTPT0 θ,A(k)zkz
T
i

=
∑
i∈A

pQTPT0 θ,A(i)ziz
T
i −

∑
k∈A

pQTPT0 θ,A(k)zk
∑
i∈A

pQTPT0 θ,A(i)zTi

= Ẽ[zzT ]− Ẽ[z]Ẽ[zT ]

= Ẽ
[
zzT − Ẽ[z]Ẽ[zT ] + zẼ[zT ]− Ẽ[z]zT

]
= Ẽ

[(
z− Ẽ[z]

)(
z− Ẽ[z]

)T]
,

where we use the definition of Ẽ(·) in the last three equations.

EC.2.11. Lemma EC.11

Lemma EC.11. Let u,v ∈ Rd and P = (pij) be a random d ×m matrix such that entry pij is chosen

independently to N (0,1/m). Then,

P
(∣∣uTv− (Pu)TPv

∣∣> ε‖u‖‖v‖)≤ 4 exp
(
−m

8
ε2
)

(EC.112)

proof. We first apply Lemma 2 to the vectors αu+α−1v and αu−α−1v for some α> 0. Then, with probability

1− 4 exp
(
−m

8
ε2
)
, we have the following two inequalities:

(1− ε)‖αu+α−1v‖22 ≤
∥∥P (αu+α−1v)

∥∥2

2
≤ (1 + ε)‖αu+α−1v‖22

(1− ε)‖αu−α−1v‖22 ≤
∥∥P (αu−α−1v)

∥∥2

2
≤ (1 + ε)‖αu−α−1v‖22.

Combining them together, we have

4(Pu)TPv=
∥∥P (αu+α−1v)

∥∥2

2
−
∥∥P (αu−α−1v)

∥∥2

2

≥ (1− ε)‖αu+α−1v‖22− (1 + ε)‖αu−α−1v‖22

= 4uTv− 2ε
(
α2‖u‖22 +α−2‖v‖22

)
.

We then choose α=
√
‖v‖
‖u‖ and above inequality implies

(Pu)TPv≥uTv− ε‖u‖2‖v‖2. (EC.113)

Similarly, we can prove the other direction of inequality.
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EC.3. Appendix: Computation Complexity for the Lasso-RP-MNL
Algorithm

The computational costs of the Lasso-RP-MNL algorithm mainly consist of the following three parts:

• Solving the Lasso: The Lasso problem will be solved O(logT ) times by time T . As the Lasso is a convex

problem, the computational cost will be O(Tdε−1/2) by using a gradient-type algorithm (e.g., FISTA in Beck

and Teboulle 2009) as the solution scheme, where ε is the optimization cost constant.

• Estimating upper confidence bound for products: First, we project all N feature vectors xi from d

dimension to |S +m| dimension, which costs O(d(|S +m|)N). After the projection, the problem reduces

to a low-dimensional setting. Then, we will need to solve a local regression problem (i.e., Eq. (4)) and

compute the upper confidence bound for each product. The local regression problem can be solved by a

constraint optimization method (e.g., Frank-Wolfe method in Jaggi 2013), whose computation complexity

is O(T (|S|+m)ε−1). The upper confidence bounds for products require the matrix inversion and maximum

eigenvalue computation so that the cost will be O((|S|+m)3N).

• Identifying optimal assortment : We need to solve a linear programming problem to identify the optimal

assortment. By using the interior point algorithm (e.g., Ye et al. 1994), we will incur at most the computa-

tional cost of O(N3ε−1/2).

Combining the above three parts, we can bound the total computational costs of the Lasso-RP-MNL

algorithm by time T as follows:

O(logT ·Tdε−1/2 +Td(|S|+m)N +T 2(|S|+m)ε−1 +T (|S|+m)3N +TN3ε−1).

We want to highlight three major computational improvements of the Lasso-RP-MNL algorithm from the

literature. First, compared to the high-dimensional literature (e.g., Bastani and Bayati 2020, Wang et al.

2018a, Kim and Paik 2019), we significantly reduce the usage of the Lasso solver from O(T ) to O(logT ), which

reduces the computational cost from O(T 2d) to O(T logTd). Second, by projecting d high-dimensional data

into (|S|+m) low-dimensional space, the computational costs for updating the upper confidence bound for

each product can be reduced from O(d3N) to O(d(|S|+m)N + (|S|+m)3N). Third, instead of enumerating

all possible assortments to establish the UCB bound, we construct the UCB bound for every individual

product, which helps us eliminate the possible O(NK) dependence and reduces the computational cost from

O(d3N ·NK) to O(d(|S|+m)N + (|S|+m)3N +N3ε−1).
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EC.4. Appendix: Additional experiments on the comparison of the
Lasso-RP-MNL algorithm to generalized linear bandit models
with K = 1

In this section, we benchmark the Lasso-RP-MNL algorithm with several generalized linear bandit algorithms

in the literature. For a fair comparison, we restrict K = 1 and N = 2, under which the MNL model is reduced

to a two-arm contextual logistic bandit problem. In particular, we consider the following three benchmark

algorithms:

• UCB-GLM: This is the Algorithm 1 in Li et al. (2017), which is a UCB-type algorithm for generalized

linear model (without using Lasso and random projection).

• Doubly-Robust Lasso Bandit: We use the doubly robust lasso estimator introduced in Kim and Paik

(2019) for feature selection (without using random projection).

• G-MCP-Bandit: This is the G-MCP-Bandit algorithm proposed in Wang et al. (2018b) (without using

random projection).

Figure EC.1 reports an representative regret comparison between the Lasso-RP-MNL algorithm

and other three benchmark algorithms (other numerical experiments exhibit similar patterns and are

omitted for brevity). In particular, in Figure EC.1, we choose s = 10 and d = 100 with β∗ =

(1,2,3,4,5,1.1,2.1,3.1,4.1,5.1,0,0, ...). The feature vectors xi are randomly generated from the standard

gaussian distribution. For each algorithm, we perform 100 trials and report the cumulative regret with 90%

confidence interval error bars.
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Figure EC.1 The cumulative regret comparison for a single item assortment, where d = 100, s = 10,

N = 2, and K = 1.

We observe that using dimension reduction methods (i.e., Lasso, MCP, or RP), all other three algorithms

could significantly improve the regret performance from UCB-GLM and that the Lasso-RP-MNL algorithm

continues to outperform other benchmark algorithms and have the least cumulative regret.
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