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ABSTRACT
We propose a computationally efficient Lasso Random Project Ban-

dit (LRP-Bandit) algorithm for sparse linear bandit problems under

high-dimensional settings with limited samples. LRP-Bandit bridges

Lasso and Random Projection as feature selection and dimension

reduction techniques to alleviate the computational complexity

and improve the regret performance. We demonstrate that for

the total feature dimension 𝑑 , the significant feature dimension

𝑠 , and the sample size𝑇 , the expected cumulative regret under LRP-

Bandit is upper bounded by �̃� (𝑇
2

3 𝑠
3

2 log

7

6 𝑑), where �̃� suppresses

the logarithmic dependence on 𝑇 . Further, we show that when

available samples are larger than a problem-dependent threshold,

the regret upper bound for LRP-Bandit can be further improved

to �̃� (𝑠
√︁
𝑇 log𝑑). These regret upper bounds on 𝑇 for both data-

poor and data-rich regimes match the theoretical minimax lower

bounds up to logarithmic factors. Through experiments, we show

that LRP-Bandit is computationally efficient and outperforms other

benchmarks on the expected cumulative regret.
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1 INTRODUCTION
The contextual bandit model has been extensively used to study

the exploration-exploitation trade-off in a sequential learning and

decision-making process [4, 7, 17, 20] and successfully applied to

∗
Authors contributed equally to this research. Correspondence to: Xue Wang

<xue.w@alibaba-inc.com>

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD 2023, 29th ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND
DATA MINING
© 2023 Association for Computing Machinery.

ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00

https://doi.org/https://doi.org/10.1145/3580305.3599329

many practical problems [3, 35, 55]. In the big data era, contex-

tual information for products and consumers is widely available

and has been accumulated with extraordinary speed. Rich contex-

tual information provides the decision-maker with unprecedented

opportunities to learn and improve prediction accuracy.

Yet, in online settings, the decision maker’s ability to effectively

use all available high-dimensional contextual information to learn

and select the reward-maximizing arm is often impaired by lim-

ited samples and high computational complexity. Recent works

on the sparse contextual bandit framework have shown that the

regret upper bound’s dependence on the high-dimensional feature

dimension 𝑑 and the sample size dimension𝑇 can be reduced to sub-

linear or poly-logarithmic orders by adopting sparse regularization

(e.g., [5, 8, 16, 29, 31, 38, 39, 50, 53, 61]). However, these algorithms

require strong assumptions on feature distributions or frequent

parameter updates via non-smooth optimization [10], which are

typically computationally expensive. [13, 15, 33, 63] adopt Random

Projection (RP) or frequent directions methods to reduce the com-

putational complexity, but special sampling procedures and the

distortion and information loss intrinsic to these methods result in

significant regret loss and lead to linear regret on 𝑇 .

In this work, we propose a computationally efficient bandit al-

gorithm based on the Upper Confidence Bound (UCB), i.e., the

Lasso Random Projection Bandit (LRP-Bandit) algorithm. Specifi-

cally, with an epoch length that exponentially grows in time, we use

Lasso [57] at the beginning of each epoch to construct (via threshold-

ing Lasso estimators) a selected feature set, which includes features

that potentially have strong influences on the decision-maker’s

reward; then, for each sample within an epoch, we adopt RP to

compress high-dimensional features, excluding features in the se-

lected feature set, to a low-dimensional space and then estimate

coefficients for features in the selected feature set and randomly

projected features. Through this process, parameter estimation can

be performed in a low-dimensional space to significantly trim down

the computational time while maintaining accuracy in predicting

the decision-maker’s reward.

Main Contributions: We demonstrate that feature selection

via thresholding the Lasso estimator limits the negative influence

of the information loss that is intrinsic and inevitable to RP and

that RP can, in turn, alleviate the negative influence of model mis-

specification in Lasso due to limited samples. We propose a UCB-

type algorithm based on Lasso and RP and theoretically prove that

the expected cumulative regret of LRP-Bandit is upper bounded

by
˜O(𝑇

2

3 𝑠
3

2 log

7

6 𝑑), which matches the theoretical minimax lower-

bound on𝑇 up to a logarithmic factor in the data-poor regime. More-

over, when available samples are larger than a problem-dependent

threshold, the regret performance can be sharpened to
˜O(𝑠

√︁
𝑇 log𝑑),

https://doi.org/https://doi.org/10.1145/3580305.3599329
https://doi.org/https://doi.org/10.1145/3580305.3599329


KDD 2023, 29th ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING Xue Wang, Mike Mingcheng Wei, and Tao Yao

Table 1: Regret comparisons for existing sparse linear bandit algorithms in data-rich regimes. Commonly required compatibility
conditions and their variants are omitted to avoid duplication. 𝜏 is a problem-dependent parameter that has a complicated
form and varies in different papers.

Bandit with feature selection Regret (Data rich) Additional requirement

Abbasi-Yadkori et al. [2]
˜O(
√
𝑑𝑇 )

Sivakumar et al. [54]
˜O(
√
𝑑𝑇 ) Gaussian noise perturbed, adversary

Ren and Zhou [53]
˜O(log

1

2 𝑑 ·𝑇
1

2
+𝜏 )

Carpentier and Munos [13]
˜O(𝜏

√
𝑇 ) Uniformed exploring set

Lattimore et al. [34]
˜O(log𝑑

√
𝑇 ) Solve combinatorial problems

Kim and Paik [31]
˜O(log𝑑 ·

√
𝑇 )

Hao et al. [29]
Data poor:

˜O(log
1

2 𝑑 ·𝑇
2

3 )
Data rich:

˜O(log𝑑 ·
√
𝑇 )

Pure exploration first, finite arms

Li et al. [38]
˜O(log

1

2 𝑑 ·𝑇
2

3 ) Pure exploration first

Chen et al. [16]
˜O(poly-log(𝑑)

√
𝑇 ) Solve combinatorial problems

Bastani and Bayati [8] O(𝜏 log2 𝑑 log2𝑇 ) Margin condition

Wang et al. [61] O(𝜏 log𝑑 log𝑇 ) Margin condition

Oh et al. [50]
˜O(

√︁
𝑇 log𝑑) Covariate diversity

Ariu et al. [5]

˜O(log𝑑 +
√
𝑇 )

˜O(log𝑑 + log𝑇 )
Covariate diversity

Covariate diversity & Margin condition

Bandit with sketching
Yu et al. [63]

˜O(
√
𝑇 + 𝜏𝑇 )

Kuzborskij et al. [33]
˜O(𝜏𝑑

√
𝑇 )

Chen et al. [15]
˜O((

√
𝑑 + 𝜏)

√
𝑇 )

This paper
Theorem 3.6 Data poor:

˜O(log
7

6 𝑑 ·𝑇
2

3 )
Corollary 3.7 Data rich:

˜O(
√︁
log𝑑 ·𝑇 )

which matches the theoretical lower bound on 𝑇 in the data-rich

regime and further improves the poly-logarithmic dependence on

𝑑 in the literature to sub-logarithmic O(
√︁
log𝑑) (e.g., [5, 8, 16, 29,

31, 50, 53, 61]). Through both synthetic experiments and Tencent’s

search advertising dataset, we further show that LRP-Bandit is

computationally efficient (e.g., Figure 1c) and outperforms other

benchmarking algorithms (Figure 1a, b, and d).

The LRP-Bandit builds on the idea of UCB and matches the theo-

retical minimax lower bounds on𝑇 in both data-poor and data-rich

regimes under weaker assumptions than greedy-type algorithms

[5, 50]. Yet, analyzing regret bounds for UCB-type algorithms with

Lasso poses a unique theoretical challenge. Due to the bias in Lasso,

the common unbiasedness requirement for UCB-type algorithms

(e.g., [2, 36]) will no longer hold. [16] rely on the best subset se-

lection to correct the bias, but it involves a time-consuming com-

binatorial optimization process. In this paper, we propose to use

RP to bridge and control the selection bias issue in UCB and fur-

ther restrain the information loss due to RP by only projecting

high-dimensional features that are not in the feature set selected

by thresholding Lasso estimators. By design, LRP-Bandit merely

solves Lasso 𝑂 (log𝑇 ) times to trim down the computation com-

plexity and is ready for real-world large-scale problems. To the

best of our knowledge, LRP-Bandit is the first computationally effi-

cient high-dimensional bandit algorithm that combines UCB with

thresholding Lasso estimators and attends nearly optimal regret.

Related Literature: Our work is closely related to the contex-

tual linear bandit literature. The classic UCB-type algorithms (e.g.,

[1, 17, 36]) are typically upper bounded by
˜O(𝑑

√
𝑇 ). By extending

to a high-dimensional sparse setting, [2] demonstrates a
˜O(
√
𝑑𝑇 )

dependence, which is also achieved in [54] by designing a struc-

tured greedy algorithm with artificial Gaussian noise perturbation.

Via RP and frequent directions, [13, 15, 33, 63] can break the poly-

nomial dependence on 𝑑 but may lead to a linear regret on 𝑇 . By

adopting sparse regularization, [5, 8, 16, 31, 50, 53, 61] establish

ploy-logarithmic dependence on 𝑑 , but the high computational

complexity remains a challenge for these algorithms (e.g., see Fig-

ure 1c). With additional margin condition, [8, 61] show that the

regret on 𝑇 can be improved to poly-logarithmic dependence; yet,

without this condition, sublinear dependence on𝑇 is the theoretical

lower bound for the data-rich regime [17].

Recently, [29] propose the explore-the-sparsity-then-commit

(ESTC) algorithm, which starts with a purely random exploration

phase to establish a Lasso estimator and then commits to a greedy al-

gorithm thereafter (a similar algorithm was proposed in [38] under

a more general setting), and show that the ESTC algorithm achieves

˜O(𝑇
2

3 log

1

3 𝑑) and its variant achieve
˜O(
√
𝑇 log𝑑) for the data-rich

regime with finite arms, under which the margin condition is satis-

fied naturally. Instead of adopting a greedy algorithm, [16] propose

a UCB-type algorithm and use the best subset selection, which

requires a time-consuming combinatorial optimization procedure,
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to de-bias and show that this algorithm reaches �̃� (poly-log(𝑑)
√
𝑇 ).

By introducing a covariate diversity assumption to explore the sym-

metric property of feature distribution, [5, 50] propose a greedy

algorithm and a thresholding algorithm, both of which yield log-

ploy dependence in 𝑑 . [28] apply the information-directed sampling

in sparse linear bandits and prove O(
√
𝑑𝑇 ) Bayesian regrets. In this

paper, we prove that under relaxed/weaker assumptions, the UCB-

based LRP-Bandit algorithm reaches
˜O(𝑇

2

3 𝑠
3

2 log

7

6 𝑑) regret in the

data-poor regime and
˜O(𝑠

√︁
𝑇 log𝑑) in the data-rich regime. To

our best knowledge, it is the first UCB-type algorithm to achieve

such nearly optimal bounds under high-dimensional data with a

polynomial-time solution scheme.

As our algorithm uses both Lasso and random projection to

perform feature selection and dimension reduction, this work is

also related to these two streams of literature. In high-dimensional

statistics, Lasso-type algorithms have been proposed and become

standard approaches for high-dimensional feature selection [21, 41,

46, 47, 64]. In bandit setting, many algorithms are proposed to tackle

the model selection problem [14, 19, 25, 27, 32, 44, 48, 49, 51, 65, 66].

Yet, these algorithms may miss some significant features in the true

underlying model (i.e., model misspecification), especially under

limited samples, and can be computationally challenging, therefore

restraining these algorithms from being implemented in online

settings. RP is one of the matrix sketching methods [18, 26, 43, 45]

that approximate a high-dimensional matrix by a more compact

low-dimensional one and has been proposed as a computationally

efficient method to deal with high-dimensional data [24, 52]. Yet,

distortions and information loss in projecting high-dimensional

data into a low-dimensional space lead to significant regret loss.

In this work, we couple Lasso and RP to limit both information

loss and model misspecification while maintaining computational

efficiency and achieving nearly optimal regret.

2 PROBLEM STATEMENT AND
PRELIMINARIES

We consider a sequential decision-making process with stochastic

arrivals: At each time 𝑡 ∈ {1, 2, ...}, the decision-maker chooses an

arm 𝑎𝑡 , described by a feature vector 𝑥𝑡,𝑎𝑡 ∈ R𝑑
, from a decision set

K = {1, 2, ..., 𝐾}, and receives a reward 𝑦𝑡 , which follows a linear

form:

𝑦𝑡 = 𝑥
⊤
𝑡,𝑎𝑡

𝛽∗ + 𝜖𝑡 , (1)

where 𝑑 is the total dimension, 𝛽∗ ∈ R𝑑
is the unknown true coeffi-

cient vector, 𝜖𝑡 is a𝜎
2
-subgaussian random variable, and superscript

⊤ indicates the transposition operator.

The decision-maker’s objective is to maximize the expected cu-

mulative reward over 𝑇 time periods. Denote the decision-maker’s

current policy as 𝜋 = {𝑎𝑡 }𝑡≥1, where 𝑎𝑡 ∈ K is the selected arm

prescribed by policy 𝜋 at time 𝑡 . To benchmark this current policy,

we define the decision-maker’s expected cumulative regret up to

time 𝑇 under the policy 𝜋 as

Regret(𝑇 ) = E
[
𝑇∑︁
𝑡=1

[max

𝑎𝑡 ∈K
{𝑥⊤𝑡,𝑎𝑡 𝛽

∗} − 𝑥⊤
𝑡,�̃�𝑡

𝛽∗]
]
.

The decision-maker aims to select a policy 𝜋 to minimize Regret(𝑇 ).

The contextual information is high-dimensional and exhibits a

latent sparse structure. In particular, we use S∗ = { 𝑗 : 𝛽∗
𝑗
≠ 0} to

denote the true index set for significant features that have non-zero

coefficient values. The size of the index set (i.e., 𝑠 = |S∗ |, where | · |
denotes the cardinality of a set) is much smaller than the dimension

of the feature vector (i.e., 𝑠 ≪ 𝑑), but the true index set S∗
is

unknown to the decision-maker.

Now, we first make the following technical assumption on the

feature and coefficient vectors:

A. 1: There exist positive constants 𝑥max and𝑏 such that ∥𝑥𝑡,𝑎𝑡 ∥∞ ≤
𝑥max and ∥𝛽 ∥1 ≤ 𝑏 for all feasible 𝑡 and 𝑎𝑡 .

Assumption A.1 upper-bounds the feature and the coefficient

vectors to avoid trivial decisions, which is a standard assumption

in high-dimensional bandits (e.g., [5, 8, 29, 50]).

3 LRP-BANDIT ALGORITHM
In this section, we describe LRP-Bandit and establish its expected

regret performance. §3.1 discusses the process of thresholding Lasso

estimators to construct the selected feature set S, §3.2 constructs
the permutation matrix and the projection matrix to reduce the

high-dimensional estimation problem into a low-dimensional space,

and §3.3 formally present LRP-Bandit to establish its upper bound

for the expected cumulative regret. For notation convenience, we

will omit the subscript 𝑎𝑡 for the chosen arm, as long as doing so

will not cause any misinterpretation.

3.1 Lasso Estimator and Feature Selection
We denoteR as the index set for iid random samples, i.e. , at any time

𝑖 ∈ R, the decision-maker randomly selects and plays an arm from

his decision set with equal probability. §3.3 will detail how these

random samples are generated via the random decay sampling

scheme. Let 𝑛𝑡 represent the size of the nonempty index set R
up to time 𝑡 , i.e., 𝑛𝑡 = |R |. The Lasso estimator for the unknown

coefficient vector 𝛽∗ can be defined as follows:

ˆ𝛽 = argmin

𝛽

1

𝑛𝑡

∑︁
𝑖∈R

∥𝑥⊤𝑖 𝛽 − 𝑦𝑖 ∥
2

2
+ _∥𝛽 ∥1, (2)

where _ > 0 is the regularization parameter and decreases in the

random sample size 𝑛𝑡 . Note that the Lasso estimator is identified

in (2) by using only iid random samples (i.e., in R), but not by
using all samples observed up to time 𝑡 . This is because that these

random samples preserve the iid property necessary for the desired

asymptotic performance of the Lasso estimator.

To ensure the identifiability of the Lasso estimator, we state

the following compatibility condition, which is commonly adopted

in the Lasso literature (e.g., [9, 11, 12]) to regulate the covariance

matrix’s behavior in a restricted region:

A. 2 There exists a positive constant ^ such that for all vector

𝑢 with 3∥𝑢S∗ ∥1 ≥ ∥𝑢S∗𝑐 ∥1, we have E𝑥

[
𝑢⊤𝑥𝑥⊤𝑢

]
≥ ^

𝑠 ∥𝑢S∗ ∥2
1
,

where S∗𝑐
denotes the complement set of S∗

.

When the random sample size 𝑛𝑡 is large enough (i.e., on the

order of O(log𝑇 )), we can show that the Lasso estimator
ˆ𝛽 will be

close to the true feature coefficient 𝛽∗ with high probability:

Theorem 3.1. [Similar to Prop 1 in [8]] Let 𝑛𝑡 ≥ O(log𝑇 ) and

_ = O
(√︃

log𝑇+log𝑑
𝑛𝑡

)
for positive integers 𝑡 and 𝑇 . Per assumption
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A.1 and A.2, the event E𝑙𝑎𝑠𝑠𝑜 (𝑡) :=
{
∥ ˆ𝛽 − 𝛽∗∥2 ≤ A0 (𝑡)

}
holds with

probability at least 1−O(𝑇 −2), whereA0 (𝑡) = 𝐶𝑙𝑎𝑠𝑠𝑜 ·𝑠
√︃

log𝑑+log𝑇
𝑛𝑡

and 𝐶𝑙𝑎𝑠𝑠𝑜 is a positive constant.

Proof. We first show the compatibility condition holds with

high probability and then use the standard Lasso convergence result

to complete the proof.

Step 1: Compatibility condition. We use the Lemma EC.6 in [8].

Note that Assumption 2 is equivalent to E[𝑥𝑥⊤] ∈ C(𝑠, ^) in [8].

Then, for 𝑛𝑡 ≥ 6𝐶2 (^)−2 log𝑑 with 𝐶2 (^) = min

(
1

2
, ^2

256𝑠𝑥2

max

)
, by

Lemma EC.6 in [8], we have

P

[
1

𝑛𝑡

∑︁
𝑖∈R

𝑥𝑖𝑥
⊤
𝑖 ∉ C(𝑠, ^√

2

)
]
≤ exp(−𝐶2 (^)2𝑛𝑡 ) .

Step 2: Lasso convergence.We use Proposition 1 in [8]. If we set

_ =
𝜒^2

8𝑠 , then the follow inequality hold:

P

[ ˆ𝛽 − 𝛽∗
1

> 𝜒

]
≤2 exp

[
−𝐶1

(
^/

√
2

)
𝑛𝑡 𝜒

2 + log𝑑

]
+ exp(−𝐶2 (^)2𝑛𝑡 ), (3)

where 𝐶1

(
^/

√
2

)
= ^4

2048𝑠2𝜎2𝑥2

max

. Next, when 𝜒 =
32

√
2𝜎𝑥max

^2
· 𝑠 ·√︃

log𝑇+log𝑑
𝑛𝑡

and 𝑛𝑡 ≥ 2𝐶2 (^)−2 log𝑇 , inequality (3) implies

P


 ˆ𝛽 − 𝛽∗

1

>
32

√
2𝜎𝑥max

^2
· 𝑠 ·

√︄
log𝑇 + log𝑑

𝑛𝑡

 ≤ 3

𝑇 2
, (4)

for 𝑠 ≥ 2. As we have ∥ · ∥1 ≥ ∥ · ∥2, the inequality (4) holds

when replacing

 ˆ𝛽 − 𝛽∗
1

with

 ˆ𝛽 − 𝛽∗
2

. The desirable result di-

rectly follows by setting 𝐶𝑙𝑎𝑠𝑠𝑜 =
32

√
2𝜎𝑥max

^2
and checking 𝑛𝑡 =

max{6𝐶2 (^)−2 log𝑑, 2𝐶2 (^)−2 log𝑇 } ≥ O(log𝑇 )1 and _ =
𝜒^2

8𝑠 =

4

√
2𝜎𝑥max

^2

√︃
log𝑇+log𝑑

𝑛𝑡
= O

(√︃
log𝑇+log𝑑

𝑛𝑡

)
. □

Note that in Theorem 3.1, as the random sample size 𝑛𝑡 increases

(e.g., by order of O(𝑡𝑐 ) for a positive constant 𝑐), A0 (𝑡) decreases
towards 0, which implies that the Lasso estimator asymptotically

converges to its true value.

By thresholding the Lasso estimator
ˆ𝛽 , we construct a selected

feature set S, which has the following property:

Theorem 3.2. Let the selected feature set be S := { 𝑗 : | ˆ𝛽 𝑗 | ≥
2A0 (𝑡)}. Under the event E𝑙𝑎𝑠𝑠𝑜 (𝑡), we have |𝛽∗𝑗 | ≤ 3A0 (𝑡) for all
𝑗 ∉ S and |S| ≤ 𝑠 .

Proof. By the definition of event E𝑙𝑎𝑠𝑠𝑜 (𝑡), the following in-

equality holds:

∥ ˆ𝛽 − 𝛽∗∥ ≤ A0 (𝑡),

which implies | ˆ𝛽 𝑗 | ≥ |𝛽∗
𝑗
| −A0 (𝑡) and | ˆ𝛽 𝑗 | ≤ |𝛽∗

𝑗
| +A0 (𝑡) for any 𝑗 .

By the definition of the index set S = { 𝑗 : | ˆ𝛽 𝑗 | ≥ 2A0 (𝑡)}, we can

1
Here we ignore the dependence on 𝑠 and log𝑑 .

show that if 𝑗 ∉ S, then | ˆ𝛽 𝑗 | < 2A0 (𝑡) . Combining this inequality

with the previous result that | ˆ𝛽 𝑗 | ≥ |𝛽∗
𝑗
| − A0 (𝑡), we have

𝑗 ∉ S ⇒ |𝛽∗𝑗 | < 3A0 (𝑡).

Next, to prove |S| ≤ 𝑠 , we first note that | ˆ𝛽 𝑗 | ≥ 2A0 (𝑡) for 𝑗 ∈ S,
combining which with the previous result that | ˆ𝛽 𝑗 | ≤ |𝛽∗

𝑗
| + A0 (𝑡)

we have

𝑗 ∈ S ⇒ |𝛽∗𝑗 | ≥ A0 (𝑡) > 0.

Recall that by definition, we have S∗ = { 𝑗 : 𝛽∗
𝑗
≠ 0}. Hence,

S ⊆ S∗
, which implies |S| ≤ |S∗ | = 𝑠 . □

The first part of Theorem 3.2 states that if a feature 𝑗 is not in the

selected feature set (i.e., 𝑗 ∉ S), then its true coefficient value 𝛽∗
𝑗
will

be small. In other words, features outside of the selected feature set

S will have little influence on the reward. Further, note that A0 (𝑡)
decreases in the random sample size 𝑛𝑡 . Therefore, if the random

sample size is sufficiently large so that 3A0 (𝑡) < min𝑗∈S∗ |𝛽∗
𝑗
|, then

features outside of the selected feature setS are indeed insignificant

(because S ⊆ S∗
) and therefore have no influence on the reward.

The second part of Theorem 3.2 suggests that the selected feature

set has a lower dimension than the dimension of the true index

set for significant features (|S| ≤ 𝑠 = |S∗ |). Therefore, parameter

estimation for significant features can be efficiently performed in a

lower dimension.

3.2 Random Projection and Coefficient
Estimation

Theorem 3.2 ensures that when the random sample size is large

enough, the selected feature setS could identify significant features

that have strong influences on the decision-maker’s reward. In

practice, however, the decision-maker may not always have the

luxury of obtaining sufficient random samples, due to high costs [8]

or limited time [62]. Under these scenarios, the set S may include

insignificant features and/or exclude significant features in the

underlying true model, which causes the model misspecification
problem. Hence, as many significant features/information will be

hidden outside of the selected feature set S, ignoring these details

will lead to suboptimal arm selections. Yet, estimating coefficients

for all features outside of the selected feature set S is still time-

consuming, as these features remain high-dimensional.

To efficiently extract information contained in features outside

of the selected feature set S, we will project these high-dimensional

features to a low-dimensional space via RP and then estimate co-

efficients for features both in the selected feature set S and in the

projected low-dimensional space. In particular, we project high-

dimensional (𝑑 − |S|) features outside of the selected feature set

S into a low-dimensional𝑚 projected features by multiplying a

Gaussian RP matrix 𝑃 ∈ R𝑚×(𝑑−|S | )
. The following Lemma shows

that after RP, the distance between the original high-dimensional

vector and the low-dimensional projected vector can be bounded.

Lemma 3.3. [similar to Lemma 2 in [6]] Let 𝑃 be a random𝑛×𝑚ma-
trix with elements chosen independently from 𝑁 (0, 1/𝑚). For any vec-
tor𝑢 ∈ R𝑛 and 𝜖 ∈ (0, 1

2
], with probability at least 1−2 exp(− 1

8
𝜖2𝑚),

the eventE𝑟𝑝 (𝑚,𝑛, 𝜖) := {(1 − 𝜖)∥𝑢∥2 ≤ ∥𝑃𝑢∥2 ≤ (1 + 𝜖)∥𝑢∥2} holds.
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Proof. From Lemma 2 in [6], with probability 1−2 exp(−𝑚
4
(𝜖2−

𝜖3)), we have

(1 − 𝜖)∥𝑢∥2
2
≤ ∥𝑃𝑢∥2

2
≤ (1 + 𝜖)∥𝑢∥2

2

⇒
√
1 − 𝜖 ∥𝑢∥2 ≤ ∥𝑃𝑢∥2 ≤

√
1 + 𝜖 ∥𝑢∥2

⇒ (1 − 𝜖)∥𝑢∥2 ≤ ∥𝑃𝑢∥2 ≤ (1 + 𝜖)∥𝑢∥2,

where the last inequality uses the facts

√
1 − 𝜖 > 1−𝜖 and

√
1 + 𝜖 <

1+𝜖 when 𝜖 ∈ (0, 1
2
]. The remaining task is to show the probability

part, which follows the fact that 𝜖2 − 𝜖3 ≥ 1

2
𝜖2 for 𝜖 ∈ (0, 1

2
]. □

Lemma 3.3 demonstrates that RP can largely preserve the ge-

ometry structure of the original high-dimensional vector with ac-

ceptable distortions with high probability. Yet, the information

loss in the process of projecting high-dimensional data to a low-

dimensional space can lead to a straightly linear regret because

such distortions will not vanish over time. Therefore, we will only

project high-dimensional features outside of the selected feature

set S to a low-dimensional space and then estimate coefficients for

features in both the selected feature set S and the projected space.

By doing so, the information loss (due to RP) will be limited by the

set S, constructed by thresholding the Lasso estimator
ˆ𝛽 , and the

negative influence of model misspecification (due to Lasso) can be

mitigated by including projected features outside of the selected

feature set S via RP
2
.

To this end, for a given selected feature set S, we construct a per-
mutation matrix 𝑄 ∈ R𝑑×𝑑

, which moves features in the selected

feature set S of the original feature vector 𝑥 to the top |S| places in
the permuted feature vector 𝑄𝑥 . To control the 𝑙2 norm of feature

covariate 𝑥 after projection, we construct a binary sampling matrix

𝐷0 =

(
𝐼 0

0 𝐷

)
∈ R𝑑×𝑑

, where 𝐷 ∈ R(𝑑−|S | )×(𝑑−|S | )
is a diagonal

binary randommatrix with𝑞 number of (𝑚/𝑞)
1

2 elements and 0 oth-

erwise. At last, we generate a Gaussian RP matrix 𝑃 ∈ R𝑚×(𝑑−|S | )

from Gaussian distribution 𝑁 (0, 1/𝑚), and use this RP matrix 𝑃

to construct the projection matrix 𝑃0 =

(
𝐼 0

0 𝑃

)
∈ R( |S |+𝑚)×𝑑

.

By multiplying the projection matrix 𝑃0 by the permuted feature

vector 𝑄𝑥 , we project the original 𝑑 dimensional vector to a low-

dimensional (|S| +𝑚) vector, in which the first |S| elements are

original features in the selected feature set S and the remaining

𝑚 elements are the projected features from projecting the origi-

nal high-dimensional features outside of the selected feature set

S via the RP matrix 𝑃 . Below, for simplicity, we use the following

notations in the projected space: 𝑧 := 𝑃0𝐷0𝑄𝑥 , \
∗
:= 𝑃0𝑄𝛽

∗
, and

Σ := 𝑄⊤𝐷⊤
0
𝑃⊤
0
𝑃0𝑄 .

Theorem 3.4. Let 𝑡 be a time index, matrices 𝑄 , 𝐷0, and 𝑃0 be
constructed by the selected feature set S = { 𝑗 : | ˆ𝛽 𝑗 | ≥ 2A0 (𝑡)} and
𝑞 ≥ 𝑚. Under event E𝑙𝑎𝑠𝑠𝑜 (𝑡), when𝑚 = O(log𝑇 + 𝑠 log𝑑), for a
feasible 𝑥 , the inequality |𝑥⊤ (𝐼 − Σ)𝛽∗ | ≤ A1 (𝑚, 𝑡) withA1 (𝑚, 𝑡) =
O(𝑠

3

2𝑚− 1

2 log

1

2 𝑑 log𝑇 · A0 (𝑡)) holds with probability at least 1 −
O(𝑇 −2).

2
It worth noting that besides RP, other matrix sketching methods, such as sparse

random projection in [37] and frequency direction in [26], can be used as well. Due to

the page limit, we will leave them for future research.

Proof. As 𝑄 is the permutation matrix and 𝑃0 is the block diag-

onal matrix, we can show that

|𝑥⊤ (𝐼 − Σ)𝛽∗ | = | (𝑄𝑥)⊤ (𝐼 − 𝐷0𝑃
⊤
0
𝑃0)𝑄𝛽∗ |

= |𝑥⊤S𝑐 (𝐼 − 𝐷𝑃⊤𝑃)𝛽∗S𝑐 |︸                     ︷︷                     ︸
(𝑎)

. (5)

As 𝛽∗ is 𝑠-sparse, there will be at most 𝑠 non-zero coefficients in

𝛽∗S𝑐 . Without loss of generality, we assume that at most the first

𝑘 elements of 𝛽∗S𝑐 are non-zero. By separating 𝑥S𝑐 , 𝑃 and 𝐷 into

𝑥S𝑐 =

(
𝑥S𝑐 ,𝑘

𝑥S𝑐 ,𝑘𝑐

)
, 𝑃 =

(
𝑃𝑘 𝑃𝑘𝑐

)
and 𝐷 =

(
𝐷𝑘

𝐷𝑘𝑐

)
with 𝑥S𝑐 ,𝑘 ∈

R1×𝑘
, 𝑥S𝑐 ,𝑘𝑐 ∈ R1×( |S𝑐 |−𝑘 )

, 𝑃𝑘 ∈ R𝑚×𝑘
, 𝑃𝑘𝑐 ∈ R𝑚×( |S𝑐 |−𝑘 )

and

𝐷𝑘 ∈ R𝑘×𝑘
. We can directly show that (a) in (5) is upper bounded:

(𝑎) ≤ |𝑥⊤S𝑐 ,𝑘
(𝐼 − 𝐷𝑘𝑃

⊤
𝑘
𝑃𝑘 )𝛽∗S𝑐 ,𝑘

| + |𝑥⊤S𝑐 ,𝑘𝑐
𝐷𝑘𝑐𝑃

⊤
𝑘𝑐
𝑃𝑘𝛽

∗
S𝑐 ,𝑘

|. (6)

Finally, combining (5) and (6) with the Lemma 5.1 in the appendix,

we can show that |𝑥⊤ (𝐼 − Σ)𝛽∗ | ≤ O(𝑠
3

2𝑚− 1

2 log

1

2 𝑑 log𝑇A0 (𝑡))
holds with probability 1−O(𝑇 −2), when𝑚 = O(log𝑇 +𝑠 log𝑑). □

Theorem 3.4 shows that the expected reward is nearly invari-

ant under Σ, which directly implies that our proposed projection

scheme is nearly optimal in the sense that it will not introduce error

when estimating the decision-maker’s expected reward asymptoti-

cally. To demonstrate, note that the expected reward for a given arm

𝑘 is𝑥⊤
𝑘
𝛽∗, whose counterpart after projection is (𝑃0𝐷0𝑄𝑥𝑘 )⊤𝑃0𝑄𝛽∗ =

𝑥⊤
𝑘
Σ𝛽∗. Further, Theorem 3.4 demonstrates that the time depen-

dence of the term |𝑥 (𝐼 − Σ)𝛽∗ | is on the order of
˜O(A0 (𝑡)) ≈

˜O(1/√𝑛𝑡 ). Therefore, if we can ensure that the order of the random

sample size by time 𝑡 is on the order of 𝑂 (𝑡𝑐 ), where 𝑐 is a positive
constant, then |𝑥 (𝐼 − Σ)𝛽∗ | will converge to 0 with high probability.

Using Lasso and random projection, we can project the original

high-dimensional 𝑑 features into a low-dimensional ( |S| +𝑚) for
the parameter estimation. Now, we can present the estimator for the

low-dimensional projected feature vector 𝑧 = 𝑃0𝐷0𝑄𝑥 as follows:

ˆ\ = arg min

∥\−\0 ∥≤𝜏

𝑡∑︁
𝑖=1

∥𝑧⊤𝑖 \ − 𝑦𝑖 ∥
2, (7)

where 𝜏 is a positive constant selected by the decision-maker and

\0 = argmin\ ∥\ − 𝑃0𝑄 ˆ𝛽 ∥. The ∥\ − \0∥ ≤ 𝜏 is a local constraint

added to (7) to prevent over-fitting. Note that we solve
ˆ\ only in the

local space around \0, which is close to the true feature coefficient

𝛽∗ with high probability.

Next, we formally state the performance of the projected estima-

tor
ˆ\ :

Theorem 3.5. Let 𝛿 = ∥ ˆ\ − \∗∥ and the time index 𝑡 ≤ 𝑇 . If
conditions in Theorem 3.4 hold, then there exists a positive term 𝐶3
such that the following event
𝑡∑︁
𝑖

|𝑧⊤𝑖 ( ˆ\ − \∗) |2 ≤ 18𝐶3 (𝑠 +𝑚) log(𝑇 ) + 4𝑥max

√
𝑠 +𝑚𝑡A1 (𝑚, 𝑡)𝛿

+ 2(𝑡A1 (𝑚, 𝑡)2 +
√
𝑡 log𝑇𝜎A1 (𝑚, 𝑡)) (8)

holds with probability at least 1 − O(𝑇 −2).
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Proof. First, we define the following two functions to simplify

notation:

𝑓𝑡 (\ ) := E
[
∥(𝑃0𝑄𝑥𝑡 )⊤\ − 𝑦𝑡 ∥2 − 𝜖2𝑡

]
,

ˆ𝑓𝑡 (\ ) := ∥(𝑃0𝑄𝑥𝑡 )⊤\ − 𝑦𝑡 ∥2 − 𝜖2𝑡 .

By the standard covering number arguments (e.g., [59]), an 𝜖 cover-

ing set H(𝜖) for ∥\ − \∗∥ ≤ 𝜏 has a finite element upper bound of

exp(𝐶3 (𝑠 +𝑚) log(𝜏/𝜖)), where parameters 𝜖, 𝜏,𝐶3 > 0. Using the

union bound in Lemma 5.5 in Appendix, we can show that for any

\ ∈ H (𝜖) and 𝛿4 > 0,

P
©«
�����∑︁
𝑡=1

[ ˆ𝑓𝑡 (\ ) − 𝑓𝑡 (\ )]
����� ≤ 2

3

log(1/𝛿4) +
√
2𝐶4

√︄
log(1/𝛿4)

∑︁
𝑡=1

𝑓𝑡 (\ )
ª®¬

≥ 1 − exp(𝐶3 (𝑠 +𝑚) log(𝜏/𝜖))𝛿4,

where 𝐶4 > 0. By setting 𝛿4 = exp(−2𝐶3 (𝑠 +𝑚) log(𝑇 )), 𝜖 = 1

2
𝜏

and 𝐶3 = max{𝐶2

4
, 1}𝐶3, the above inequality implies that with

probability at least 1 − O(𝑇 −2), we have�����∑︁
𝑡=1

[ ˆ𝑓𝑡 (\ ) − 𝑓𝑡 (\ )]
����� ≤ 4

3

𝐶3 (𝑠 +𝑚) log(𝑇 )

+2
√︄
𝐶3 (𝑠 +𝑚) log(𝑇 )

∑︁
𝑡=1

𝑓𝑡 (\ ). (9)

Next, we can upper bound |∑𝑡 𝑓𝑡 ( ˆ\ ) | as follows:

|
∑︁
𝑡=1

𝑓𝑡 ( ˆ\ ) | ≤
�����∑︁
𝑡=1

ˆ𝑓𝑡 ( ˆ\ ) −
∑︁
𝑡=1

𝑓𝑡 ( ˆ\ )
����� +max

{
0,

∑︁
𝑡=1

ˆ𝑓𝑡 ( ˆ\ )
}
. (10)

Let Γ𝑇 := max

{
0,

∑
𝑡=1

ˆ𝑓𝑡 ( ˆ\ )
}
and 𝑥 =

√︃∑
𝑡 𝑓𝑡 ( ˆ\ ). We combine

(9) and (10) to show that 𝑥2, or equivalently |∑𝑡=1 𝑓𝑡 ( ˆ\ ) |, can be

bounded with probability 1 − O(𝑇 −2) as follows:

𝑥2 ≤ 4

3

𝐶3 (𝑠 +𝑚) log(𝑇 ) + 2

√︁
𝐶3 (𝑠 +𝑚) log(𝑇 ) · 𝑥 + Γ𝑇 . (11)

Note that the inequality (11) can be viewed as a quadratic inequality

in 𝑥 . Hence, we can solve for the upper bound of 𝑥

𝑥 ≤
2

√︁
𝐶3 (𝑠 +𝑚) log(𝑇 ) +

√︁
(4 + 16/3)𝐶3 (𝑠 +𝑚) log(𝑇 ) + 4Γ𝑇

2

≤
2

√︁
𝐶3 (𝑠 +𝑚) log(𝑇 ) + 4

√︁
𝐶3 (𝑠 +𝑚) log(𝑇 ) + 2

√
Γ𝑇

2

(12)

≤ 3

√︁
𝐶3 (𝑠 +𝑚) log(𝑇 ) +

√︁
Γ𝑇 , (13)

where in (12), we first enlarge (4 + 16/3) to 16 and then uses the

fact that

√
𝑎2 + 𝑏2 ≤ 𝑎 + 𝑏 for 𝑎, 𝑏 ≥ 0, and in (13), we uses the fact

that (𝑎 + 𝑏)2 ≤ 2𝑎2 + 2𝑏2 for all 𝑎, 𝑏 ∈ R.

Finally, combining (13) with Lemma 5.4, we can show that the

following inequality holds with probability 1 − O(𝑇 −2):∑︁
𝑡=1

∥𝑧⊤𝑡 (\ − \∗)∥2

≤18(𝐶3 (𝑠 +𝑚) log(𝑇 ) + 2Γ𝑇 + 4𝑥max

√
𝑠 +𝑚𝑇A1 (𝑚, 𝑡)𝛿.

Finally, via Lemma 5.6 in the appendix, with probability at least

1−O(𝑇 −2), Γ𝑡 ≤ 𝑡A1 (𝑚, 𝑡)2+
√
𝑡 log𝑇𝜎A1 (𝑚, 𝑡), and the statement

in the theorem follows immediately. □

Theorem 3.5 describes the prediction accuracy. As the selected

feature set S may not include all significant features, and since

random projection may lead to information loss, the true model

that characterizes the decision-maker’s reward may not be within

the projected space. In particular, the first term on the right-hand-

side of Eq. (8) is of log(𝑇 ) dependence, which is the typical result

on confidence ellipsoids in bandit literature [2], which states the

estimation accuracy through mixing random/non-random samples.

The second and the third terms on the right-hand-side of Eq. (8) are

errors generated by random projection. Note that when 𝑛𝑡 = ˜O(𝑡
2

3 ),
𝛿 and A1 (𝑚, 𝑡) can be bounded by

˜O(𝑡−
1

3 ) (See Lemma 5.9 in the

appendix); then the second term will appear on the order of
˜O(𝑡

1

3 ).
Moreover, the third term is also on the order of

˜O(𝑡
1

3 ). Hence, the
right-hand-side of Eq. (8) will be on the order of

˜O(𝑡
1

3 ).

3.3 LRP-Bandit Algorithm
Before presenting LRP-Bandit, we will need to design a sampling

scheme that generates sufficient random samples, which are essen-

tial to calibrate the parameter estimation. As bandit models involve

exploitation and exploration, samples generated under exploitation

typically are not purely random. Therefore, we propose a random

decay sampling scheme
3
to generate sufficient, but not excessive

to compromise the decision-maker’s reward performance, random

samples.

Random Decay Sampling Scheme: At the beginning of time 𝑡 , the

decision-maker draws a random variable 𝑟𝑡 that follows Bernoulli

distribution with a success probability 𝑃𝑐0,𝑐1 (𝑡) = min {1, 𝑐0𝑡−𝑐1 },
where 𝑐0 > 0 and 𝑐1 ∈ (0, 1) are positive constants selected by

the decision-maker. If 𝑟𝑡 = 1, then the decision-maker randomly

selects and plays an arm from his decision set with equal probability.

Otherwise, the decision-maker selects the arm with the highest

upper confidence bound.

Now, we can present the proposed LRP-Bandit algorithm. This

algorithm can be roughly described as follows: At time 𝑡 , the de-

cision maker will first check whether the current time 𝑡 is the

beginning of a new epoch: If yes, then run Lasso via Eq. (2) us-

ing only random samples in the set R. After the initial check, the
decision-maker will follow the random decay sampling scheme to

draw a random Bernoulli variable: If this random variable equals 1,

then the decision-maker will randomly select an arm from the deci-

sion set with equal probability; otherwise, the decision-maker will

update the coefficient estimation for the projected feature vector

via Eq. (7), using all samples in the setW, and then adopt a UCB-

type approach to select the arm with the highest upper confidence

bound.

Note that LRP-Bandit divides the total time periods into consec-

utive epochs, and the size/length of each epoch increases exponen-

tially. Only at the beginning of each epoch, the decision-maker will

threshold Lasso (using only random samples in the set R) to update

the selected feature set S, the permutation matrix𝑄 , the projection

matrix 𝑃0, the local solution \0, and parameter 𝜏 . By construction,

the frequency of using Lasso is decreasing at an exponential rate,

3
Another way to generate sufficient random samples is to follow the explore spar-

sity then exploit structure (e.g., [29]). Yet, to select the optimal length for the pure

exploration phase, these algorithms require the knowledge of the value of𝑇 , which is

typically unavailable at the beginning.
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LRP-Bandit Algorithm

Require: Input 𝑐0, 𝑐1,𝑚, 𝑞, _0 and integer 𝑢 ≥ 2. Initialize 𝑡 = 1, 𝑒𝑝𝑜𝑐ℎ = 1, R = ∅, W = ∅, 𝑄 = 𝐼 , \0 = 0, 𝐷0 as diagonal 𝑞-sparse matrix

with all nonzero elements equal (𝑚/𝑞)1/2, 𝑃0 ∈ R𝑚×𝑑
with i.i.d. 𝑁 (0, 1/𝑚) Gaussian elements, {𝜔𝑡 (𝑚)}, and 𝜏1 = +∞.

1: for 𝑡 = 1, 2, ... do
2: if 𝑡 = 𝑢𝑒𝑝𝑜𝑐ℎ then
3: Solve Eq. (2) for

ˆ𝛽 with samples in R and _ = _0
√︁
(log𝑑 + log 𝑡)/|R|.

4: Update set S = { 𝑗 : | ˆ𝛽 𝑗 | ≥ 2A0 (𝑡)} and reconstruct the matrices 𝑃0 and 𝑄 .

5: Update 𝑒𝑝𝑜𝑐ℎ = 𝑒𝑝𝑜𝑐ℎ + 1, \0 = argmin ∥\ − 𝑃0𝑄 ˆ𝛽 ∥, and 𝜏𝑡−1 = A0 (𝑡).
6: end if
7: Draw a random variable 𝑟𝑡 that follows Bernoulli distribution with success probability 𝑃𝑐0 (𝑡).
8: if 𝑟𝑡 = 1 then
9: Randomly select an arm 𝑎𝑡 ∈ K ; set R = R ∪ {𝑡}.
10: else
11: Solve Eq. (7) for

ˆ\ with samples inW, \0, and 𝜏 = 𝜏𝑡−1.
12: Find 𝑎𝑡 = argmax𝑎 𝑧

⊤
𝑡,𝑎

ˆ\ + 𝜔𝑡 (𝑚)∥𝑧𝑡,𝑎 ∥𝑋 −1
𝑡−1

, where 𝑋𝑡−1 =
∑𝑡−1
𝑖=1 𝑧𝑖𝑧𝑖 , 𝑧𝑡,𝑎 = 𝑃0𝐷0𝑄𝑥𝑡,𝑎 , and 𝑧𝑡 = 𝑃0𝐷0𝑄𝑥𝑡 for all 𝑡, 𝑎.

13: end if
14: Offer arm 𝑎𝑡 , observe 𝑦𝑡 ; update 𝑥𝑡 = 𝑥𝑡,𝑎𝑡 , 𝜏𝑡 = 𝜏𝑡−1, and W = W ∪ {𝑡}.
15: end for

which helps alleviate the computational burden associated with

solving Lasso under high-dimensional data with large sample sizes

while ensuring prediction accuracy. The following theorem estab-

lishes the expected cumulative regret upper bound for LRP-Bandit.

Theorem 3.6. Let 𝑐0 = O(𝑠
3

2 log

7

6 𝑑 log𝑇 ), 𝑐1 = 1

3
,𝑚 = O(log𝑇 +

𝑠 log𝑑), 𝜔𝑡 (𝑚) = O((𝑠 +𝑚) log
1

2 (𝑡) + (𝑠 +𝑚)
1

4

√︁
𝑡A1 (𝑚, 𝑡)𝜏𝑡 log 𝑡),

𝑞 ≥ 𝑚, 𝜏𝑡 = O(A0 (𝑡)), and E[𝑃0𝐷0𝑄𝑥𝑡𝑥
⊤
𝑡 𝑄

⊤𝐷0𝑃
⊤
0
] is positive

definite for all 𝑃0, 𝐷0 and𝑄 . Per assumption A.1-A.2, the expected cu-
mulative regret for LRP-Bandit is upper bounded by ˜O(𝑇

2

3 ·𝑠
3

2 log

7

6 𝑑),
where �̃� (·) suppresses the logarithmic dependence on 𝑇 .

Proof. We first separate the expected cumulative regret under

random samples from that without random samples:

Regret(𝑇 )

=E

[
𝑇∑︁

𝑡 ∈R
[max

𝑎∈K
{𝑥⊤𝑡,𝑎𝛽∗} − 𝑥⊤𝑡,𝑎𝑡 𝛽

∗] +
𝑇∑︁

𝑡∉R
[max

𝑎∈K
{𝑥⊤𝑡,𝑎𝛽∗} − 𝑥⊤𝑡,𝑎𝑡 𝛽

∗]
]

≤2𝑥max𝑏E [𝑛𝑇 ] +E
[
𝑇∑︁

𝑡∉R
[max

𝑎∈K
{𝑥⊤𝑡,𝑎𝛽∗} − 𝑥⊤𝑡,𝑎𝑡 𝛽

∗]
]

︸                                     ︷︷                                     ︸
(𝑏 )

, (14)

where (14) uses |𝑥⊤𝑡 𝛽 | ≤ ∥𝑥𝑡 ∥∞∥𝛽 ∥1 ≤ 𝑥max𝑏 for all 𝑥𝑡 and feasible

𝛽 in AssumptionA.1. Let’s assume events E𝑙𝑎𝑠𝑠𝑜 (𝑡) and E𝑟𝑝 (𝑚,𝑑, 12 )
hold. Here, we require 𝑇0 ≤ 𝑡 ≤ 𝑇 and 𝑇0 = O(𝑐0𝑇

2

3 ).
Using Lemma 5.8, we can show that 𝑐0 = O(log𝑇 ) implies that

the random sample size 𝑛𝑇 being on the order O(𝑐0𝑇
2

3 ) with prob-

ability at least 1 − O(𝑇 −2). Hence, the first term in (14) can be

bounded as follows:

2𝑥max𝑏E[𝑛𝑇 ] = ˜O(𝑠
3

2 log

7

6 𝑑𝑇
2

3 ) . (15)

Next, we need to bound the part (𝑏) in (14). Without loss of gen-

erality, let’s assume time 𝑇 is the end of epoch 𝑗 , and then we

can rewrite the second part of the expected cumulative regret as

the sum of regret of non-random decisions in all epochs. Using

Lemma 5.3, we show that the regret of non-random decisions in

epoch 𝑖 , denoted as Regret
epoch

(𝑖), can be bounded with probability
1 − O(𝑇 −2):

Regret
epoch

(𝑖) ≤
𝑢𝑖−1∑︁
𝑡=𝑢𝑖−1

2A1 (𝑚, 𝑡) + 𝑔(𝑖) · 𝜔b
𝑢𝑖
(𝑚)

√︁
𝑢𝑖 ,

where 𝑔(𝑖) = 2𝑥max𝑏
√
1 − 𝑢−1

√︂
2(𝑠 +𝑚) log

(
8𝑢𝑖𝑑𝑥2

max

`𝑛
𝑢𝑖−1−1

)
and b𝑢𝑖 =

argmax𝑡 ∈[𝑢𝑖−1,𝑢𝑖−1] 𝜔𝑡 (𝑚). Then the regret of non-random deci-

sions up to time 𝑇 can be bounded as follows:

𝑗∑︁
𝑖=1

Regret
epoch

(𝑖)

≤2(𝑢 − 1)𝑥max𝑏 +
𝑗∑︁

𝑖=2

𝑢𝑖−1∑︁
𝑡=𝑢𝑖−1

2A1 (𝑚, 𝑡) +
𝑗∑︁

𝑖=2

𝑔(𝑖) · 𝜔b
𝑢𝑖
(𝑚)

√︁
𝑢𝑖

≤2(𝑢 − 1)𝑥max𝑏 +
𝑢 𝑗−1∑︁
𝑡=𝑢

2A1 (𝑚, 𝑡) + max

𝑘∈[2, 𝑗 ]
(𝑔(𝑘)𝜔b

𝑢𝑘
(𝑚))︸                      ︷︷                      ︸

:=ℎmax

𝑗∑︁
𝑖=2

√︁
𝑢𝑖

≤2(𝑢 − 1)𝑥max𝑏 +
𝑇∑︁
𝑡=𝑢

2A1 (𝑚, 𝑡) + ℎmax

𝑢

𝑢1/2 − 1

·
√
𝑇 + 1, (16)

where the first inequality uses the fact that the first epoch length is

𝑢−1 and in the last inequality we use𝑇 = 𝑢 𝑗 −1 per our assumption.

Next, we compute the upper bounds for

∑𝑇
𝑡=1 2A1 (𝑚, 𝑡). By

using the definition of A1 (𝑚, 𝑡) in Theorem 3.4 and A0 (𝑡) =

𝐶𝑙𝑎𝑠𝑠𝑜𝑠

√︃
log 𝑡+log𝑑

𝑛𝑡
≤ O(𝑠 log

1

2 𝑇 log

1

2 𝑑 · 𝑛−
1

2

𝑡 ), we can show that

𝑇∑︁
𝑡=𝑢

2A1 (𝑚, 𝑡) ≤ O
(
𝑠
5

2𝑚− 1

2 log𝑑 log
3

2 𝑇 ·
𝑇∑︁
𝑡=𝑢

𝑛
− 1

2

𝑡

)
. (17)
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Via Lemma 5.8, we have 𝑛𝑡 = O(𝑐0𝑡
2

3 ) = O(𝑡
2

3 · 𝑠
3

2 log

7

6 𝑑 log𝑇 )
with probabilities at least 1 − O(𝑇 −2), which implies

𝑇∑︁
𝑡=𝑢

𝑛
− 1

2

𝑡 = ˜O
(
𝑇

2

3 · 𝑠−
3

4 log
− 7

12 𝑑

)
. (18)

Combining (17) with (18) and𝑚 = O(log𝑇 + 𝑠 log𝑑), we have
𝑇∑︁
𝑡=𝑢

2A1 (𝑚, 𝑡) ≤ ˜O(𝑠
5

4 log

5

12 𝑑 ·𝑇
2

3 ). (19)

We then consider the upper bound for ℎmax. It is direct to show

that for any 𝑖 ∈ [2, 𝑗],

𝑥𝑤𝑔(𝑖) ≤ 2𝑥max𝑏
√︁
1 − 𝑢−1

√︄
2(𝑠 +𝑚) log

(
8𝑇𝑑𝑥2

max

`𝑛𝑢−1

)
, (20)

where we relax the terms 𝑢𝑖 and 𝑛𝑢𝑖−1−1 in 𝑔(𝑖) by 𝑇 and 𝑛𝑢−1
respectively. On the other hand, from the monotonicity of 𝜔𝑡 (𝑚),
we have max𝑘∈[2, 𝑗 ] 𝜔b

𝑢𝑘
(𝑚) = 𝜔𝑇 (𝑚). Combining it with (20),

𝜔𝑇 (𝑚) = O((𝑠 +𝑚) log
1

2 (𝑇 ) + (𝑠 +𝑚)
1

4

√︁
𝑇A1 (𝑚,𝑇 )𝜏𝑇 log𝑇 ),𝑚 =

O(log𝑇 +𝑠 log𝑑), 𝜏𝑇 = O(A0 (𝑇 )),𝑛𝑇 = ˜O(𝑠3/2 log7/6 𝑑 ·𝑇 2/3), and
the definitions ofA1 (𝑚,𝑇 ), we can show ℎmax ≤ ˜O(𝑠

3

2 log

7

6 𝑑 ·𝑇
1

6 ).
Finally, combining the upper bound of ℎmax with (14), (15), (16)

and (19), we can conclude that with probability 1 − O(𝑇 −2), the
cumulative regret up to epoch 𝑗 can be bounded as follows:

Regret(𝑇 |E𝑙𝑎𝑠𝑠𝑜 (𝑇 ) ∩ E𝑟𝑝 (𝑚,𝑑,
1

2

)) ≤ ˜O(𝑠
3

2𝑇
2

3 log

7

6 𝑑) . (21)

Note that in previous proofs, we assume events E𝑙𝑎𝑠𝑠𝑜 (𝑡) and
E𝑟𝑝 (𝑚,𝑑, 1

2
) hold.We then build the upper bound for the probability

that those two events happen simultaneously. Using Theorem 3.1,

Lemma 3.3, and union bound, we have

P(E𝑙𝑎𝑠𝑠𝑜 (𝑇 ) ∩ E𝑟𝑝 (𝑚,𝑑,
1

2

)) ≥ 1 − 2 exp(−1

8

· 1
4

𝑚) −𝑇 · O(𝑇 −2)

≥ 1 − O(𝑇 −1),
where last inequality uses𝑚 = O(log𝑇 + 𝑠 log𝑑). Finally, via the
union bound, the unconditional expected cumulative regret can be

upper bounded:

Regret (𝑇 ) ≤ ˜O(𝑠
3

2𝑇
2

3 log

7

6 𝑑) · (1 − O(𝑇 −1)) + 𝑥max𝑏𝑇 · O(𝑇 −1)

≤ ˜O(𝑠
3

2𝑇
2

3 log

7

6 𝑑) .
□

Theorem 3.6 demonstrates that under limited samples, LRP-

Bandit achieves a tight logarithmic bound on the feature dimen-

sion O(log
5

3 𝑑) and attains O(𝑇
2

3 ) upper bound on the sample size,

which matches the regret minimax lower bound on𝑇 under limited

samples [29]. It is worth noting that the O(𝑇
2

3 ) dependence can
be further improved, even under limited samples, by introducing

the covariate diversity assumption (e.g., see [5, 50]): The covariate

diversity assumption states the symmetric behavior of the feature

distribution so that the Lasso-type estimator has better accuracy

and leads to improved regret performance.

LRP-Bandit is also computationally efficient. Note that the fre-

quency of solving Lasso problems decays exceptionally. Hence, if

we apply the stochastic gradient descent with variance reduction

techniques (e.g., SVRG [30]), the step-wise average computation

cost will be O(𝑑). In addition, projecting the high-dimensional fea-

ture 𝑥 into the low-dimension feature 𝑧, solving the local regression

Eq. (7) with the gradient type method, and computing 𝑋 −1
𝑡 will

cost O(𝑑𝑚), O((𝑠 +𝑚)2), and O((𝑠 +𝑚)3), respectively. In sum,

the average step-wise computation cost of LRP-Bandit is on the

order of O(𝑑𝑚 + (𝑠 +𝑚)3), which can be further reduced in practice

by using sparse random projection or other efficient optimization

algorithms.

3.4 Improved upper bound for large samples
When the sample size is large so that 3A0 (𝑇 ) < 𝛽min, where 𝛽min :=

min𝑗∈S∗ |𝛽∗
𝑗
|, the regret upper bound can be further improved to

˜O(𝑠
√︁
𝑇 log𝑑). This condition is commonly referred to as the infor-

mation minimum signal condition in literature [22, 23, 29, 42, 61].

Here, we refer to the sample size under which inequality 3A0 (𝑇 ) <
𝛽min holds as the data-rich regime. Particularly, in the data-rich

regime, we can show that |𝛽∗
𝑗
| = 0 for 𝑗 ∉ S (see Theorem 3.2).

Next, we can prove that the selected feature set S recovers the

true significant feature set S∗
(see Theorem 3.2), under which it is

straightforward to show the
˜O(𝑠

√︁
𝑇 log𝑑) dependence. Moreover,

when facing the perfect selection, the remaining dimension in 𝛽∗

to be projected becomes strictly 0, which suggests that there will

be no distortion and information loss. We formally summarized the

result in the following corollary.

Corollary 3.7. Let 𝑐0 = O(𝑠
1

2 𝛽−2
min

log

1

2 𝑑 log𝑇 ), 𝑐1 = 1

2
, 𝑚 =

O(log𝑇 + 𝑠 log
1

2 𝑑), 𝜔𝑡 (𝑚) = O((𝑠 +𝑚) log
1

2 (𝑡)), 𝜏𝑡 = O(A0 (𝑡)),
𝑞 ≥ 𝑚, and for all 𝑃0,𝐷0 and𝑄 ,E[𝑃0𝐷0𝑄𝑥𝑡𝑥

⊤
𝑡 𝑄

⊤𝐷⊤
0
𝑃⊤
0
] is positive

definite. If 3A0 (𝑇 ) < 𝛽min, then per assumption A.1-A.2, the expected
cumulative regret for LRP-Bandit is upper bounded by ˜O(𝑠

√︁
𝑇 log𝑑).

The proof steps for Corollary 3.7 are similar to that of Theorem

3.6 by changing the choices of 𝑐0 and 𝜔𝑡 (𝑚). We omit them for

brevity.

Note that the information minimum signal condition will au-

tomatically hold with high probability for a large 𝑇 . As the true

underlying parameters 𝛽∗ for any given problem is a constant for

all 𝑇 , we can directly show that the information minimum signal

condition is satisfied for 𝑛𝑡 = ˜O(𝑠2 (log𝑇 + log𝑑)𝛽−2
min

), which can

be attained for 𝑡 ≥ O
(
(𝑠2 log𝑑𝛽−2

min
)

1

1−𝑐
1

)
. Moreover, if 𝑠 and 𝑑 are

on the same order, the regrets in Corollary 3.7 reduce to the classic

O(𝑑
√
𝑇 ) results (e.g.,see [1, 36]) up to some extra logarithmic terms.

Furthermore, the regret bound will remain the same, even if

the decision-maker doesn’t know the information minimal signal

value 𝛽min and uses a rough, or even wrong, estimation instead.

Specifically, if 𝛽min is underestimated/overestimated, then with

a higher/lower sampling rate, the minimal signal condition will

eventually hold so that the regret bound remains unchanged.

4 EMPIRICAL EXPERIMENTS
In this section , we benchmark LRP-Bandit to LinUCB [17], CBRAP

[63], Lasso Bandit [8], MCP Bandit [61], Doubly Robust (DR), Lasso

Bandit [31], ESTC [29], and Thresholded (TH) Lasso bandit [5].

LinUCB is a UCB-type contextual bandit algorithm without using

dimension reduction techniques, which could potentially lead to

high computational costs and poor regret performance. CBRAP uses



Efficient Sparse Linear Bandits under High Dimensional Data KDD 2023, 29th ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING

500 1000 1500 2000
Time Step

0

25

50

75

100

125

150

175

200

Cu
m

ul
at

iv
e 

Re
gr

et

LRP
Lasso
Mcp
CBRAP

LinUCB
DR-Lasso
ESTC
TH-Lasso

(a) Regret for Exp 1

10 100 1000 10000
Feature Dimension d

0

50

100

150

Cu
m

ul
at

iv
e 

Re
gr

et

LRP
Lasso
Mcp
CBRAP

LinUCB
DR-Lasso
ESTC
TH-Lasso

(b) Regret for Exp 2

10 100 1000 10000
Feature Dimension d

0

2e3

4e3

6e3

8e3

1e4

Co
m

pu
ta

tio
na

l T
im

e 
(S

ec
)

LRP
Lasso
Mcp
CBRAP

LinUCB
DR-Lasso
ESTC
TH-Lasso

(c) Time for EXp 2 (d) Tencent Experiment

Figure 1: Hyperparameters for synthetic experiments: 𝑐0 = 1,𝑚 = min{30, 𝑑/2}, _0 = 0.8, 𝑢 = 2.

RP to reduce computational time. Lasso Bandit, MCP Bandit, DR

bandit, TH bandit, and ESTC algorithms replace the traditional OLS

estimator with the sparse inducing estimator (e.g., Lasso and MCP)

and are shown to perform well even with limited samples. Another

possible benchmark is [50], which seems to have similar numerical

performance in our experiments as TH Lasso Bandit and is omitted

for better visual clarity. Next, we start with synthetic-data-based

experiments to compare LRP-Bandit to these benchmarks in terms

of regret performance and computational time. Then, we use the

high-dimensional Tencent search advertising dataset to evaluate

LRP-Bandit’s performance in a real practice scenario where the

technical assumptions specified early on may not hold. All experi-

ments are run on a Macbook Pro Laptop with a 2.3 GHz Quad-Core

Intel Core i5 CPU and 16G memory.

4.1 Synthetic Experiments
We consider a two-arm contextual linear bandit problem by varying

𝑑 = {10, 102, 103, 104} while keeping 𝑠 = 10 to simulate different

sparsity levels. The true coefficient vector is arbitrarily set to be

𝛽∗ = (1, 2, 3, 4, 5, 1.1, 2.1, 3.1, 4.1, 5.1, 0, 0...), and the error term 𝜖𝑡 is

randomly draw from 𝑁 (0, 0.1). For each algorithm, we perform 100

trials and report the average cumulative regret.

The first experiment, Figure 1(a), illustrates the influence of the

sample size 𝑇 on the cumulative regret for the case where 𝑑 = 100

(other cases exhibit a similar pattern and therefore are omitted).

Overall, we observe that LRP-Bandit outperforms benchmarks in

terms of cumulative regret. Particularly, LinUCB and CBRAP have

significantly higher cumulative regret compared to other bench-

marking algorithms. Further, we observe that CBRAP seems un-

able to converge in the experiment, which cautions the potential

long-term negative influences of information loss in RP. Lasso-type

bandits (i.e., Lasso, MCP, DR, TH, and ESTC) significantly reduce

the decision-maker’s cumulative regret from LinUCB and CBRAP.

Yet, those may suffer from model misspecification due to limited

samples. Therefore, by using RP to extract features outside of the sig-

nificant feature set identified by thresholding the Lasso, LRP-Bandit

can mitigate the negative influences of model misspecification and

reduces the expected cumulative regret from Lasso-type bandits by

35% on average.

The second experiment presents the influence of the feature di-

mension 𝑑 on the cumulative regret, Figure 1(b), and computational

time, Figure 1(c), for the case 𝑇 = 1000. As expected, the cumula-

tive regret and computational time for all algorithms increases in

𝑑 . Among all algorithms, LRP-Bandit has the lowest cumulative

regret, which grows much milder than all other algorithms. Fur-

thermore, from the computational time perspective, CBRAP, ESTC,

and LRP-Bandit scale more efficient than the other algorithms and

are more suitable for online decision-making.

4.2 Tencent Search Advertising Dataset
In the final experiment, we use the Tencent search advertising

dataset [56] to scale up the experiment’s dimensionality. For il-

lustrative purposes, we focus on a three-ad experiment (ad IDs

21162526, 3065545, and 3827183) with 849338 entries/samples and

509256 features, and extending the experiment to include more ads

or features will not qualitatively change our results and insights.

For each algorithm, we perform 100 trials and report the average

revenue for 5000 users. Figure 1(d) plots the average revenue perfor-

mance. Due to the memory space and the computational time limits,

LinUCB can not be directly implemented, so we have to resort to

the matrix sketching-based LinUCB algorithm according to [33].

We observe that LRP-Bandit continues to outperform other

benchmarks in terms of average revenue performance. In particular,

by combining the Lasso and random projection, LRP-Bandit seems

to be able to learn and accurately select the revenue-maximizing

ad with a very small sample size and attain the highest revenue.

5 CONCLUSION AND FUTUREWORKS
Conclusion. In this work, we propose a computationally effi-

cient LRP-Bandit algorithm for online contextual linear bandit

problems under high-dimensional settings. We demonstrate that

LRP-Bandit’s expected cumulative regret is upper bounded by

˜O(𝑇
2

3 𝑠
3

2 log

7

6 𝑑). With a large sample size, the expected cumulative

regret can be further improved to
˜O(𝑠

√︁
𝑇 log𝑑). The𝑇 dependence

of both results matches theoretical lower bounds. Through experi-

ments based on synthetic and real-world datasets, we demonstrate

that LRP-Bandit significantly improves the regret performance from

existing benchmarking algorithms while remaining superior in

computational efficiency.

Future works. In the current analysis, we require knowledge of

the upper bound or the exact sparsity level 𝑠 as known before-

hand. It is worth exploring the situation that no such information
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is available. The possible directions include utilizing the balanced

covariance assumption (e.g., Assumption 6 in [50]) or switching to

nonconvex sparse inducing penalty instead of Lasso [40]. Another

limitation of the proposed algorithm is that we used the dense ran-

dom projection matrix, which may still be computationally costly

especially when the total dimension𝑑 is extremely large; hence, one

possible future research direction is to further improve the compu-

tational efficiency by exploring other alternative matrix sketching

methods (e.g., FD in [33]) under similar algorithmic frameworks.
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Lemma 5.1. Let 𝑥S𝑐 ,𝑘 , 𝑥S𝑐 ,𝑘𝑐 , 𝑃𝑘𝑃𝑘𝑐 , 𝐷𝑘 and 𝐷𝑘𝑐 satisfy the definition in the proof of Theorem 3.4. Per conditions in Theorem 3.4 and set

𝑚 ≥ 2max
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1
𝑠,

2 log𝑇+2𝑠 log𝑑
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𝑇 2
we have

|𝑥⊤S𝑐 ,𝑘
(𝐼 − 𝐷𝑘𝑃

⊤
𝑘
𝑃𝑘 )𝛽∗S𝑐 ,𝑘

| ≤
3𝐶

3/2
1
𝑠3/2 + 3

√
2

√︁
𝑠2 log𝑇 + 𝑠3 log𝑑 +

√
𝐶1 (6𝑠

√
𝑚 + 96𝑠𝑚−1/2
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√
𝐶1𝑚

𝑥maxA0 (𝑡) (22)

and
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𝑃𝑘𝛽

∗
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√
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Proof. We separately bound |𝑥⊤S𝑐 ,𝑘
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|.

The bound for |𝑥⊤S𝑐 ,𝑘
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|. We first separate the term into two parts as follows
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(25)

The Remark 5.40 in [60] shows that there exists a constant 𝐶1 > 0 such that for any 𝑡 > 0, the following inequality holds with probability

1 − exp

(
−𝐶1𝑡2

)
:

∥𝑃⊤
𝑘
𝑃𝑘 − 𝐼 ∥ ≤ max{𝛿, 𝛿2}, (26)

where

𝛿 = 𝐶1
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𝑘

𝑚
+ 𝑡
√
𝑚
.

Via (26), the first part of Theorem 3.2 (i.e., |𝛽∗
𝑗
| ≤ 3A0 (𝑇 ) for all 𝑗 ∉ S), and using the union bound, we can show that for any 𝑘

dimensional subspace of the original 𝑑 dimensional space, (i,e., 𝑘 < 𝑠), the term (𝑎1) is upper bounded as follows with probability at least

1 −
(𝑑
𝑠

)
exp(−𝐶1𝑡2) ≤ 1 − 𝑑𝑠 exp(−𝐶1𝑡2) = 1 − exp(−𝐶1𝑡2 + 𝑠 log𝑑):

(𝑎1) ≤ max{𝛿, 𝛿2}∥𝑥S𝑐 ,𝑘 ∥∥𝛽∗S𝑐 ,𝑘
∥ ≤ max{𝛿, 𝛿2} · 𝑠 · 𝑥max max

𝑗∈S𝑐
|𝛽∗𝑗 |. (27)

By Theorem 3.2, for all 𝑗 ∈ S𝑐
, we have |𝛽∗

𝑗
| ≤ 3A0 (𝑡), combining which with (27), we can show the following inequality:

(𝑎1) ≤ 3𝑠𝑥maxmax{𝛿, 𝛿2}A0 (𝑡) . (28)

Further, if we set 𝑡 =
√︁
2(log𝑇 + 𝑠 log𝑑)/𝐶1, then we can immediately show that

1 − exp(−𝐶1𝑡2 + 𝑠 log𝑑) ≥ 1 − 1
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, (29)

and
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+
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2 log𝑇 + 2𝑠 log𝑑
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Finally, note that we have 𝑘 ≤ 𝑠 (see Theorem 3.2). Hence, when𝑚 ≥ 2max

{
𝐶2

1
𝑠,

2 log𝑇+2𝑠 log𝑑
𝐶1

}
, we can show that 𝛿 ≤ 1, which implies

𝛿2 ≤ 𝛿 . Then, via (28), (29), and (30), we can refine the upper bound of (𝑎1) in (27) as follows:
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where we use 𝑘 ≤ 𝑠 in the last inequality.

We then build the upper bound for the term (𝑎2) in (24). As 𝑃𝑘 is filled with i.i.d. 𝑁 (0, 1/𝑚) random Gaussian elements, we apply Lemma 3.3

twice to have the following two inequalities:

P

(
∥𝑃𝑘𝛽∗S𝑐 ,𝑘

∥2 ≥ (1 + 𝜖)∥𝛽∗S𝑐 ,𝑘
∥2

)
≤ 2 exp

(
−1

8

𝜖2𝑚

)
(32)

and

P
(
∥𝑃𝑘 (𝐼 − 𝐷𝑘 )𝑥S𝑐 ,𝑘 ∥2 ≥ (1 + 𝜖)∥(𝐼 − 𝐷𝑘 )𝑥S𝑐 ,𝑘 ∥2

)
≤ 2 exp

(
−1

8
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)
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√
𝑠𝑥max

)
≤ 2 exp

(
−1

8

𝜖2𝑚

)
, (33)

where the last inequality uses the fact that 𝐷𝑘 is element-wise upper bounded by 1 and that 𝑞 ≥ 𝑚 and 𝑘 ≤ 𝑠 .
Combining inequalities (32) and (33), we can show that

P

(
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√
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, (34)

where we use the observation that (𝑎 + 𝑏)2 ≤ 2(𝑎2 + 𝑏2) for all 𝑎, 𝑏 ∈ R. By setting 𝜖 =

√︃
16

log𝑇
𝑚 for (34), we can show the following

inequality:
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,

combining which with the factor that ∥𝛽∗S𝑐 ,𝑘
∥ ≤

√
𝑠 · 3A0 (𝑡), we can establish the following probability bound for (𝑎2):
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6𝑠𝑚 + 96𝑠 log𝑇
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The desirable result follows by combining (24), (31), and (35).
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⊤
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∗
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|. As matrix 𝑃𝑘𝑐 is also filled with i.i.d 𝑁 (0, 1/𝑚) random Gaussian elements, we apply Lemma 3.3 to

have

P
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where last inequality uses the fact that 𝐷𝑘𝑐 contains at most 𝑞 nonzero elements with strength

√︁
𝑚/𝑞. Combining inequalities (32) and (36)

with the similar procedures for (34), we can show that

P

(
|𝑥⊤S𝑐 ,𝑘𝑐

𝐷𝑘𝑐𝑃
⊤
𝑘𝑐
𝑃𝑘𝛽

∗
S𝑐 ,𝑘

| ≥ 2(1 + 𝜖2)
√
𝑚𝑥max∥𝛽∗S𝑐 ,𝑘

∥
)
≤ 4 exp

(
−1

8

𝜖2𝑚

)
, (37)

where we use the observation that (𝑎 + 𝑏)2 ≤ 2(𝑎2 + 𝑏2) for all 𝑎, 𝑏 ∈ R. By setting 𝜖 =
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16

log𝑇
𝑚 for (37), we can show the following
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Now, combining with ∥𝛽∗S𝑐 ,𝑘
∥ ≤

√
𝑠 · 3A0 (𝑡), we can establish the following probability bound for |𝑥⊤S𝑐 ,𝑘𝑐

𝑃⊤
𝑘𝑐
𝑃𝑘𝛽

∗
S𝑐 ,𝑘

|:

P

(
|𝑥⊤S𝑐 ,𝑘𝑐

𝑃⊤
𝑘𝑐
𝑃𝑘𝛽

∗
S𝑐 ,𝑘

| ≤ 6

√
𝑠𝑚 + 96

√
𝑠 log𝑇

√
𝑚

𝑥maxA0 (𝑡)
)
≥ 1 − 4

𝑇 2
. (38)

Finally, via union bound, we can show the desirable results hold with probability at least 1 − 9

𝑇 2
. □
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Lemma5.2. Let𝑥∗𝑡 and𝑥𝑡 be the optimal arm and the actually selected arm at time 𝑡 ,𝜔𝑡 (𝑚) ≥
√︃
18(𝐶3 (𝑠 +𝑚) log(𝑡) + 2Γ𝑡 + 4

√
𝑠 +𝑚𝑥max𝛿𝑡 𝑡A1 (𝑚, 𝑡),

𝛿𝑡 = ∥ ˆ\ −\∗∥, Δ𝑡 = max𝑥𝑡 𝑥
⊤
𝑡 𝛽

∗ − 𝑧⊤𝑡 \∗, 𝑛𝑡 ≥ O( (𝑠+𝑚)2 log𝑇
` ), and 𝑋𝑡 =

∑𝑡
𝑖 𝑧𝑖𝑧

⊤
𝑖
. If there exists a ` such thatE[𝑧⊤𝑡 𝑧𝑡 ] ⪰ ` > 0 and conditions

in Theorem 3.4 hold, then the following inequality holds with probability 1 − O(𝑇 −2):

(𝑥∗𝑇 )
⊤𝛽∗ − (𝑥𝑇 )⊤𝛽∗ ≤ min

{
2𝑥max𝑏, 2𝜔𝑇 (𝑚)∥𝑧𝑡 ∥𝑋 −1

𝑡−1
+ 2Δ𝑇

}
. (39)

Proof. We denote the expected reward function in projected space as R𝑧 (\ ) = 𝑧⊤\ . Then, the reward difference under the estimated

coefficient vector
ˆ\ and under the true coefficient vector \∗ = 𝑃0𝑄𝛽∗ can be presented as

|R𝑧 ( ˆ\ ) − R𝑧 (\∗) | = ∥𝑧⊤ ( ˆ\ − \∗)∥

=

√︃
∥𝑧⊤ ( ˆ\ − \∗)∥2

=

√︃
( ˆ\ − \∗)⊤𝑧𝑧⊤ ( ˆ\ − \∗) . (40)

By Lemma 5.7 in the Appendix, we know that 𝑋𝑡 =
∑𝑡
𝑖=1 𝑧𝑖𝑧

⊤
𝑖
is invertible with high probability. Then, (40) implies

|R𝑧 ( ˆ\ ) − R𝑧 (\∗) | =
√︃
( ˆ\ − \∗)⊤𝑧𝑧⊤ ( ˆ\ − \∗)

=

√︃
( ˆ\ − \∗)⊤𝑋 1/2

𝑡−1𝑋
−1/2
𝑡−1 𝑧𝑧⊤ (𝑋 −1/2

𝑡−1 )⊤ (𝑋 1/2
𝑡−1)⊤ ( ˆ\ − \∗)

≤
√︃
∥( ˆ\ − \∗)⊤𝑋 1/2

𝑡−1∥∥𝑋
−1/2
𝑡−1 𝑧𝑧⊤ (𝑋 −1/2

𝑡−1 )⊤∥∥(𝑋 1/2
𝑡−1)⊤ ( ˆ\ − \∗)∥

=

√︃
∥(𝑋 1/2

𝑡−1)⊤ ( ˆ\ − \∗)∥2 · 𝑧⊤𝑋
−1
𝑡−1𝑧

=

√︃
( ˆ\ − \∗)⊤𝑋𝑡−1 ( ˆ\ − \∗) · 𝑧⊤𝑋 −1

𝑡−1𝑧

= ∥𝑧∥𝑋 −1
𝑡−1

√√√
𝑡−1∑︁
𝑖=1

∥𝑧⊤
𝑖
( ˆ\ − \∗)∥2, (41)

where ∥𝑧∥𝑋 −1
𝑡−1

denotes the weighted 2-norm of 𝑧 with matrix 𝑋 −1
𝑡−1. Combining Theorem 3.5 and (41), with probability 1 − O(𝑇 −2) we can

bound the reward difference by

|R𝑧 ( ˆ\ ) − R𝑧 (\∗) | ≤ ∥𝑧∥𝑋 −1
𝑡−1

√√√ 𝑡∑︁
𝑖=1

∥𝑧⊤
𝑖
( ˆ\ − \∗)∥2

≤ ∥𝑧∥𝑋 −1
𝑡−1

√︃
18(𝐶3 (𝑠 +𝑚) log(𝑇 ) + 2Γ𝑡 + 4

√
𝑠 +𝑚𝑥max𝛿𝑡 𝑡A1 (𝑚, 𝑡)

≤ ∥𝑧∥𝑋 −1
𝑡−1
𝜔𝑡 (𝑚), (42)

where last inequality uses the definition of 𝜔𝑡 (𝑚). Let 𝑧∗ = 𝑃0𝑄𝑥∗ and we then have the following bound:

R𝑧∗ (\∗) − R𝑧𝑡 (\∗) = R𝑧∗ (\∗) − R𝑧∗ ( ˆ\ ) + R𝑧∗ ( ˆ\ ) − R𝑧𝑡 ( ˆ\ ) + R𝑧𝑡 ( ˆ\ ) − R𝑧𝑡 (\∗)

≤ |R𝑧∗ (\∗) − R𝑧∗ ( ˆ\ ) | + R𝑧∗ ( ˆ\ ) − R𝑧𝑡 ( ˆ\ ) + |R𝑧𝑡 ( ˆ\ ) − R𝑧𝑡 (\∗) |

≤ ∥𝑧∗∥𝑋 −1
𝑡−1
𝜔𝑡 (𝑚) + ∥𝑧𝑡 ∥𝑋 −1

𝑡−1
𝜔𝑡 (𝑚) + R𝑧∗ ( ˆ\ ) − R𝑧𝑡 ( ˆ\ ), (43)

where (43) applies (42) on |R𝑧∗ (\∗) − R𝑧∗ ( ˆ\ ) | and |R𝑧𝑡 ( ˆ\ ) − R𝑧𝑡 (\∗) |. As 𝑧𝑡 is selected by solving

𝑧𝑡 = argmax

𝑧
R𝑧 ( ˆ\ ) + ∥𝑧∥𝑋 −1

𝑡−1
𝜔𝑡 (𝑚)

⇒R𝑧∗ ( ˆ\ ) + ∥𝑧∗∥𝑋 −1
𝑡−1
𝜔𝑡 (𝑚) ≤ R𝑧𝑡 ( ˆ\ ) + ∥𝑧𝑡 ∥𝑋 −1

𝑡−1
𝜔𝑡 (𝑚)

⇒∥𝑧∗∥𝑋 −1
𝑡−1
𝜔𝑡 (𝑚) + ∥𝑧𝑡 ∥𝑋 −1

𝑡−1
𝜔𝑡 (𝑚) + R𝑧∗ ( ˆ\ ) − R𝑧𝑡 ( ˆ\ ) ≤ 2∥𝑧𝑡 ∥𝑋 −1

𝑡−1
𝜔𝑡 (𝑚) . (44)

Combining (43) and (44), we have

R𝑧∗ (\∗) − R𝑧𝑡 (\∗) ≤ 2∥𝑧𝑡 ∥𝑋 −1
𝑡−1
𝜔𝑡 (𝑚).
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As 𝑥∗𝑡 and 𝑥𝑡 are the optimal arm and the actually selected arm at time 𝑡 , combining with the definition of Δ𝑡 , we can bound the reward

difference between the optimal arm and the actually selected arm at time 𝑡 as follows

(𝑥∗𝑡 )⊤𝛽∗ − (𝑥𝑡 )⊤𝛽∗ ≤ R𝑧∗ (\∗) − R𝑧𝑡 (\∗) + 2Δ𝑡

≤ 2∥𝑧𝑡 ∥𝑋 −1
𝑡−1
𝜔𝑡 (𝑚) + 2Δ𝑡 . (45)

The remaining proof follows directly by using Assumption A.1. □

Lemma 5.3. Let 𝑢 and 𝑖 be integers that are greater than 1, and 𝜔𝑡 (𝑚) and 𝑛𝑡 satisfy the same conditions as in Lemma 5.2. For the current
epoch starting with 𝑇0 = 𝑢𝑖−1 and ending with 𝑇1 = 𝑢𝑖 − 1, if 𝜔𝑡 (𝑚) ≥ 1, there exists a ` > 0 such that E[𝑧⊤𝑡 𝑧𝑡 ] ⪰ ` for all 𝑡 , and conditions in
Theorem 3.4 hold, then there exists a b𝑇 ∈ [𝑇0,𝑇1] such that the following inequality holds with probability 1 − O(𝑇 −2):

Regret of non-random decisions in epoch 𝑖

≤
𝑇1∑︁
𝑡=𝑇0

2A1 (𝑚, 𝑡) + 2𝑥max𝑏𝜔b𝑇 (𝑚)
√︁
𝑇1 + 1

√︁
1 − 𝑢−1

√︄
2(𝑠 +𝑚) log

(
8𝑇𝑑𝑥2

max

`𝑛𝑇0−1

)
. (46)

Moreover, if A0 (𝑇 ) ≥ 1

3
𝛽min or A0 (𝑇0) < 1

3
𝛽min, then we have b𝑇 = 𝑇1.

Proof. Using Lemma 5.2, we have

Regret of non-random decisions in epoch 𝑖

≤
𝑇1∑︁
𝑡=𝑇0

min

{
2𝑥max𝑏, 2𝜔𝑡 (𝑚)∥𝑧𝑡 ∥𝑋 −1

𝑡−1
+ 2Δ𝑡

}
≤

𝑇1∑︁
𝑡=𝑇0

(
2Δ𝑡 + 2𝑥max𝑏𝜔𝑡 (𝑚)min

{
1, ∥𝑧𝑡 ∥𝑋 −1

𝑡−1

})
=

𝑇1∑︁
𝑡=𝑇0

(
2Δ𝑡 + 2𝑥max𝑏𝜔𝑡 (𝑚)min

{
1,

√︃
_max (𝑋 −1/2

𝑡−1 𝑧𝑡𝑧
⊤
𝑡 𝑋

−1/2
𝑡−1 )

})
, (47)

where we denote _max (𝑋 −1/2
𝑡−1 𝑧𝑡𝑧

⊤
𝑡 𝑋

−1/2
𝑡−1 ) as the largest eigenvalue of matrix 𝑋

−1/2
𝑡−1 𝑧𝑡𝑧

⊤
𝑡 𝑋

−1/2
𝑡−1 .

Let b𝑇 = argmaxb∈[𝑇0,𝑇1 ] 𝜔b (𝑚), and we can further simplify (47) as follows

Regret of non-random decisions in epoch 𝑖

≤2
𝑇1∑︁
𝑡=𝑇0

Δ𝑡 + 2𝑥max𝑏𝜔b𝑇 (𝑚)
𝑇1∑︁
𝑡=𝑇0

min

{
1,

√︃
_max (𝑋 −1/2

𝑡−1 𝑧𝑡𝑧
⊤
𝑡 𝑋

−1/2
𝑡−1 )

}

≤2
𝑇1∑︁
𝑡=𝑇0

Δ𝑡 + 2𝑥max𝑏𝜔b𝑇 (𝑚)
√︁
𝑇1 −𝑇0

√√√√ 𝑇1∑︁
𝑡=𝑇0

min

{
1, _max (𝑋 −1/2

𝑡−1 𝑧𝑡𝑧
⊤
𝑡 𝑋

−1/2
𝑡−1 )

}
(48)

≤2
𝑇1∑︁
𝑡=𝑇0

Δ𝑡 + 2𝑥max𝑏𝜔b𝑇 (𝑚)
√︁
𝑇1 + 1

√︁
1 − 𝑢−1

√√√√ 𝑇1∑︁
𝑡=𝑇0

min

{
1, _max (𝑋 −1/2

𝑡−1 𝑧𝑡𝑧
⊤
𝑡 𝑋

−1/2
𝑡−1 )

}
, (49)

where (48) uses Cauchy-Schwarz inequality and (49) uses the fact that 𝑇1 −𝑇0 = 𝑢𝑖 − 𝑢𝑖−1 − 1 ≤ 𝑢𝑖 (1 − 𝑢−1) = (𝑇1 + 1) (1 − 𝑢−1).
Let 𝑋𝑡 =

∑𝑇1
𝑖=1

𝑧𝑖𝑧
⊤
𝑖
. Per Lemma 5.7, we know that 𝑋𝑡 is invertible with high probability, which implies

𝑋𝑡 = 𝑋𝑡−1 + 𝑧𝑡𝑧⊤𝑡 = 𝑋
1/2
𝑡−1 (𝐼 + 𝑋

−1/2
𝑡−1 𝑧𝑡𝑧

⊤
𝑡 𝑋

−1/2
𝑡−1 )𝑋 1/2

𝑡−1

⇒ log det𝑋𝑡 = log det𝑋𝑡−1 + log det(𝐼 + 𝑋 −1/2
𝑡−1 𝑧𝑡𝑧

⊤
𝑡 𝑋

−1/2
𝑡−1 )

⇒ log det𝑋𝑡 − log det𝑋𝑡−1 ≥ log(1 + _max (𝑋 −1/2
𝑡−1 𝑧𝑡𝑧

⊤
𝑡 𝑋

−1/2
𝑡−1 )) .

Together with the observation that 2 log(1 + 𝑥) ≥ 𝑥 for 𝑥 ∈ (0, 1], we can show the following inequality holds:

min

{
1, _max (𝑋 −1/2

𝑡−1 𝑧𝑡𝑧
⊤
𝑡 𝑋

−1/2
𝑡−1 )

}
≤ 2 log

(
1 + _max (𝑋 −1/2

𝑡−1 𝑧𝑡𝑧
⊤
𝑡 𝑋

−1/2
𝑡−1 )

)
≤ 2 (log det𝑋𝑡 − log det𝑋𝑡−1) (50)
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Note that we have the following two inequalities:

_max

(
𝑋𝑇1

)
≤ 𝑇1 max

𝑖∈[1,𝑇 ]
_max (𝑧𝑖𝑧⊤𝑖 ) ≤ 𝑇1 max

𝑖∈[1,𝑇1 ]
∥𝑧𝑡 ∥2 = 𝑇1 max

𝑖∈[1,𝑇1 ]
∥𝑃0𝐷0𝑄𝑥𝑡 ∥2 ≤ 4𝑇1𝑑𝑥

2

max
, (51)

P

(
_min

(
𝑋𝑇0−1

)
≥ 1

2

𝑛𝑇0−1`
)
≥ 1 − O((𝑇0 − 1)−2) = 1 − O(𝑇 −2), (52)

where (51) uses event E𝑟𝑝 (𝑚,𝑑, 1
2
) in last inequality, and (52) uses Lemma 5.7 and𝑇0 = (𝑇1 + 1)/𝑢. Therefore, we can show that the following

inequalities holds with probability 1 − O(𝑇 −2):

log det𝑋𝑇 ≤ (𝑠 +𝑚) log _max (𝑋𝑇 ) ≤ (𝑠 +𝑚) log(4𝑇𝑑𝑥2
max

) (53)

log det𝑋𝑇0−1 ≥ (𝑠 +𝑚) log _min (𝑋𝑇0−1) ≥ (𝑠 +𝑚) log( 1
2

𝑛𝑇0−1`), (54)

where 𝑋𝑡 is at most 𝑠 +𝑚 dimension squared matrix. Combining (50), (53) and (54), we can show that

𝑇1∑︁
𝑡=𝑇0

min

{
1, _max (𝑋 −1/2

𝑡−1 𝑧𝑡𝑧
⊤
𝑡 𝑋

−1/2
𝑡−1 )

}
≤

𝑇1∑︁
𝑡=𝑇0

2 (log det𝑋𝑡 − log det𝑋𝑡−1)

= 2

(
log det𝑋𝑇1 − log det𝑋𝑇0−1

)
≤ 2

(
(𝑠 +𝑚) log(4𝑇1𝑑𝑥2max

) − (𝑠 +𝑚) log( 1
2

𝑛𝑇0−1`)
)

≤ 2(𝑠 +𝑚) log
(
8𝑇1𝑑𝑥

2

max

𝑛𝑇0−1`

)
. (55)

Finally, plugging (55) back to (49), we will have the following inequality:

Regret of non-random decisions in epoch 𝑖

≤
𝑇1∑︁
𝑡=𝑇0

2A1 (𝑚, 𝑡) + 2𝑥max𝑏𝜔b𝑇 (𝑚)
√︁
𝑇1 + 1

√︁
1 − 𝑢−1

√︄
2(𝑠 +𝑚) log

(
8𝑇1𝑑𝑥

2

max

`𝑛𝑇0−1

)
. (56)

The inequality in (56) also uses the fact that Δ𝑡 = max𝑥 𝑥
⊤𝛽∗ − 𝑧⊤\∗ ≤ |𝑥⊤ (𝐼 − Σ)𝛽∗ | ≤ A1 (𝑚, 𝑡), where the last inequality comes from

Theorem 3.4.

The remaining part follows directly by using themonotonicity of𝜔𝑡 (𝑚), whichmonotonically increases in 𝑡 when 𝑡 satisfiesA0 (𝑡) ≥ 1

3
𝛽min

or A0 (𝑡) < 1

3
𝛽min. Thus, we have b𝑇 = argmax𝑡 ∈[𝑇0,𝑇 ] 𝜔𝑡 (𝑚) = 𝑇 for A0 (𝑇0) < 1

3
𝛽min or A0 (𝑇 ) ≥ 1

3
𝛽min.

□

Lemma 5.4. Let 𝛿 = ∥\ − \∗∥ and 𝑇1 be the current time step. Under conditions specified in Theorem 3.4, for any 𝑇0 ∈ (0,𝑇1), the following
inequality holds with probability 1 − O(𝑇 −2):

𝑇1∑︁
𝑡=𝑇0

∥𝑧⊤𝑡 (\ − \∗)∥2 ≤
𝑇1∑︁
𝑡=𝑇0

𝑓𝑡 (\ ) + 4

√
𝑠 +𝑚𝑥max𝑇1𝛿A1 (𝑚,𝑇1) . (57)

Proof.

𝑓𝑡 (\ ) = E
[
|𝑥⊤𝑡 𝑄⊤𝐷0𝑃

⊤
0
\ − 𝑦 |2 − 𝜖2𝑡

]
= E

[
|𝑧⊤𝑡 \ − 𝑥⊤𝑡 𝛽∗ − 𝜖𝑡 |2 − 𝜖2𝑡

]
= E

[
|𝑧⊤𝑡 \ − 𝑥⊤𝑡 𝛽∗ |2 + 𝜖2𝑡 − 2𝜖𝑡 (𝑧⊤𝑡 \ − 𝑥⊤𝑡 𝛽∗) − 𝜖2𝑡

]
= |𝑧⊤𝑡 \ − 𝑥⊤𝑡 𝛽∗ |2

= |𝑧⊤𝑡 (\ − \∗) + 𝑥⊤ (Σ − 𝐼 )𝛽∗ |2 (58)

= |𝑧⊤𝑡 (\ − \∗) |2 + |𝑥⊤𝑡 (Σ − 𝐼 )𝛽∗ |2 + 2𝑧⊤𝑡 (\ − \∗)𝑥⊤𝑡 (Σ − 𝐼 )𝛽∗

≥ |𝑧⊤𝑡 (\ − \∗) |2 + 2𝑧⊤𝑡 (\ − \∗)𝑥⊤𝑡 (Σ − 𝐼 )𝛽∗

≥ |𝑧⊤𝑡 (\ − \∗) |2 − 2∥𝑧𝑡 ∥∥(\ − \∗)∥ |𝑥2𝑡 (Σ − 𝐼 )𝛽∗ |
≥ |𝑧⊤𝑡 (\ − \∗) |2 − 2∥𝑧𝑡 ∥𝛿 |𝑥2𝑡 (Σ − 𝐼 )𝛽∗ |, (59)

where (58) uses \∗ = 𝑃0𝑄𝛽∗ and 𝑧𝑡 = 𝑃0𝐷0𝑄𝑥𝑡 , and the last inequality uses 𝛿 = ∥\ − \∗∥.
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Per E𝑟𝑝 (𝑚,𝑑, 1
2
), there exists a feasible 𝛽 such that

|𝑧⊤𝑡 \ | = | (𝑃0𝐷0𝑄𝑥𝑡 )⊤𝑃0𝑄𝛽 | ≤ ∥𝑃0𝐷0𝑄𝑥𝑡 ∥2∥𝑃0𝑄𝛽 ∥2 ≤ 1.5∥𝐷0𝑄𝑥𝑡 ∥2 · 1.5∥𝛽 ∥2 ≤ 4∥𝐷0𝑄𝑥𝑡 ∥2∥𝛽 ∥2 . (60)

Moreover, since we assume that event E𝑟𝑝 (𝑚,𝑑, 1
2
) in Theorem 3.4 holds , we have:

∥𝑃0𝐷0𝑄𝑥 ∥2 ≤ (1 + 1

2

)∥𝐷0𝑄𝑥 ∥2 ≤ 2∥𝐷0𝑄𝑥 ∥2 .

Combing 𝐷0 =

(
𝐼

𝐷

)
, 𝐷𝑖𝑖 ∈ {0,

√︃
𝑚
𝑞 } and |𝐷 | = 𝑞 with 𝑄 being a permutation matrix and ∥𝑥𝑡 ∥∞ ≤ 𝑥max in Assumption A.1, we can upper

∥𝐷0𝑄𝑥𝑡 ∥2 as follow

∥𝐷0𝑄𝑥 ∥ ≤

√︄
|S|𝑥2

max
+ 𝑞(

√︂
𝑚

𝑞
𝑥max)2 ≤

√
𝑠 +𝑚𝑥max, (61)

where the last inequality uses |S| ≤ 𝑠 in Theorem 3.2.

Above inequality (61) directly suggests that for all 𝑖 > 0

∥𝑧𝑖 ∥ ≤ 2

√
𝑠 +𝑚𝑥max . (62)

Combining (59), (62) and Theorem 3.4, we can show that the following inequality holds with probability 1 − O(𝑇 −2):

𝑇1∑︁
𝑡=𝑇0

𝑓𝑡 (\ ) ≥
𝑇1∑︁
𝑡=𝑇0

∥𝑧⊤𝑡 (\ − \∗)∥2 − 4

√
𝑠 +𝑚𝑥max𝑇1𝛿A1 (𝑚,𝑇1).

□

Lemma 5.5. Under conditions specified in Theorem 3.4, for 𝛿4 > 0, the following inequality holds with probability at least 1 − 𝛿4:�����∑︁
𝑡

[ ˆ𝑓𝑡 (\ ) − 𝑓𝑡 (\ )]
����� ≤ 2

3

log(1/𝛿4) +
√
2𝐶4

√︄
log(1/𝛿4)

∑︁
𝑖=1

𝑓𝑡 (\ ), (63)

where 𝐶4 =
√︃
288(𝑠 +𝑚)𝑥2

max
𝑏2 + 18𝜎2.

Proof. We first construct a Doob’s martingale {𝑀 (𝑖), 𝑖 = 0, 1, 2, ...,𝑇 } as follow:

𝑀 (𝑖) = E[
∑︁
𝑡

ˆ𝑓𝑡 (\ ) |H𝑖 ], (64)

where H𝑖 = { ˆ𝑓𝑗 (\ ), 𝑗 ≤ 𝑖}. Using Bernstein’s inequality, we have

P ( |𝑀 (𝑇 ) −𝑀 (0) | ≥ 𝑡) ≤ exp

(
− 𝑡2

2𝑘 + 2𝑡/3

)
⇒P

(�����∑︁
𝑡

[ ˆ𝑓𝑡 (\ ) − 𝑓𝑡 (\ )]
����� ≥ 𝑡

)
≤ exp

(
− 𝑡2

2𝑘 + 2𝑡/3

)
, (65)

where 𝑘 ≥ ∑⊤
𝑖=1𝑉𝑎𝑟 [𝑀 (𝑖) −𝑀 (𝑖 − 1) |H𝑖−1]. We then prove the following claim:

Claim:
∑⊤
𝑖=1 [(4𝑥max𝑏 + 𝑥max𝑏)2 + 4𝜎2] 𝑓𝑡 (\ ) ≥

∑⊤
𝑖=1𝑉𝑎𝑟 [𝑀 (𝑖) −𝑀 (𝑖 − 1) |H𝑖−1].

First, we show that the mean difference is zero:

E[𝑀 (𝑖) −𝑀 (𝑖 − 1) |H𝑖−1]

= E

[
E[

∑︁
𝑡

ˆ𝑓𝑡 (\ ) |H𝑖 ] −E[
∑︁
𝑡

ˆ𝑓𝑡 (\ ) |H𝑖−1]
]

= E[
∑︁
𝑡

ˆ𝑓𝑡 (\ )] −E[
∑︁
𝑡

ˆ𝑓𝑡 (\ )] = 0 (66)
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And, the variance is

𝑉𝑎𝑟 [𝑀 (𝑖) −𝑀 (𝑖 − 1) |H𝑖−1]
= E[(𝑀 (𝑖) −𝑀 (𝑖 − 1) |H𝑖−1)2]

= E[( ˆ𝑓𝑖 (\ ) − 𝑓𝑖 (\ ))2]

= E[ ˆ𝑓𝑖 (\ )2] − 𝑓𝑖 (\ )2

≤ E[ ˆ𝑓𝑖 (\ )2], (67)

where the second to last equality follows from the fact that E[ ˆ𝑓𝑖 (\ )] = 𝑓𝑡 (\ ).
Next, we expand E[ ˆ𝑓𝑖 (\ )2] as follows:

E[ ˆ𝑓𝑡 (\ )2] = E[(∥𝑧⊤𝑡 \ − 𝑦𝑡 ∥2 − 𝜖2𝑡 )2]
= E[(∥𝑧⊤𝑡 \ − 𝑥⊤𝑡 𝛽∗ − 𝜖𝑡 ∥2 − 𝜖2𝑡 )2]
= E[(∥𝑧⊤𝑡 \ − 𝑥⊤𝑡 𝛽∗∥2 + 𝜖2𝑡 − 2𝜖𝑡 ∥𝑧⊤𝑡 \ − 𝑥⊤𝑡 𝛽∗∥ − 𝜖2𝑡 )2]
= E[(∥𝑧⊤𝑡 \ − 𝑥⊤𝑡 𝛽∗∥2 − 2𝜖𝑡 ∥𝑧⊤𝑡 \ − 𝑥⊤𝑡 𝛽∗∥)2]
= E[∥𝑧⊤𝑡 \ − 𝑥⊤𝑡 𝛽∗∥4 + 4𝜖2𝑡 ∥𝑧⊤𝑡 \ − 𝑥⊤𝑡 𝛽∗∥2 − 2∥𝑧⊤𝑡 \ − 𝑥⊤𝑡 𝛽∗∥2 (2𝜖𝑡 ∥𝑧⊤𝑡 \ − 𝑥⊤𝑡 𝛽∗∥)]
= ∥𝑧⊤𝑡 \ − 𝑥⊤𝑡 𝛽∗∥4 + 4𝜎2∥𝑧⊤𝑡 \ − 𝑥⊤𝑡 𝛽∗∥2 (68)

= ∥𝑧⊤𝑡 \ − 𝑥⊤𝑡 𝛽∗∥2 (∥𝑧⊤𝑡 \ − 𝑥⊤𝑡 𝛽∗∥2 + 4𝜎2), (69)

where (68) uses 𝜖𝑡 being 𝜎
2
-subgaussian random variable.

Via the same procedures of (60)-(61) in Lemma 5.4, we have

∥𝑧𝑡 ∥2 ≤ 2

√
𝑠 +𝑚𝑥max (70)

and

∥\ ∥2 ≤ 2∥𝛽 ∥ ≤ 2𝑏. (71)

Combining (70) and (71) with Assumption A.1, we have

∥𝑧⊤𝑡 \ − 𝑥⊤𝑡 𝛽∗∥2 ≤ (4
√︁
(𝑠 +𝑚)𝑥max𝑏 + 𝑥max𝑏)2 ≤ (8

√︁
(𝑠 +𝑚)𝑥max𝑏)2, (72)

where the last inequality uses the fact that 𝑠 +𝑚 > 1 by construction.

From (69) and (72), we can show the following inequality:

E[ ˆ𝑓𝑡 (\ )2] ≤ ∥𝑧⊤𝑡 − 𝑥⊤𝑡 𝛽∗∥2 [(8
√︁
(𝑠 +𝑚)𝑥max𝑏)2 + 4𝜎2]

= ∥𝑧⊤𝑡 − 𝑥⊤𝑡 𝛽∗∥2 [64(𝑠 +𝑚)𝑥2
max

𝑏2 + 4𝜎2] . (73)

On the other hand, we have

𝑓𝑡 (\ ) = E[∥𝑧⊤𝑡 \ − 𝑦𝑡 ∥2 − 𝜖2𝑡 ]
= E[∥𝑧⊤𝑡 \ − 𝑥⊤𝑡 𝛽∗∥2 + 𝜖2𝑡 − 2𝜖𝑡 ∥𝑧⊤𝑡 \ − 𝑥⊤𝑡 𝛽∗∥ − 𝜖2𝑡 ]
= ∥𝑧⊤𝑡 \ − 𝑥⊤𝑡 𝛽∗∥2 . (74)

Combining (73) and (74), we have

E[ ˆ𝑓𝑡 (\ )2] ≤ 𝑓𝑡 (\ ) [64(𝑠 +𝑚)𝑥2
max

𝑏2 + 4𝜎2] .. (75)

Finally, the Claim follows directly by combining (67) and (75).

Now, we set 𝑘 in (65) as 𝑘 = 𝐶2

4

∑
𝑡=1 𝑓𝑡 (\ ), where 𝐶4 =

√︃
288(𝑠 +𝑚)𝑥2

max
𝑏2 + 18𝜎2. From the Claim, we can verify that

𝑘 =
9

2

[64(𝑠 +𝑚)𝑥2
max

𝑏2 + 4𝜎2]
∑︁
𝑖=1

𝑓𝑡 (\ )

≥
∑︁
𝑖=1

[64(𝑠 +𝑚)𝑥2
max

𝑏2 + 4𝜎2] 𝑓𝑡 (\ )

≥
∑︁
𝑖=1

𝑉𝑎𝑟 [𝑀 (𝑖) −𝑀 (𝑖 − 1) |H𝑖−1] .
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Then, we can plug 𝑘 = 𝐶2

4

∑
𝑡=1 𝑓𝑡 (\ ) back into (65) and show that

P

(�����∑︁
𝑡

[ ˆ𝑓𝑡 (\ ) − 𝑓𝑡 (\ )]
����� ≥ 𝜖

)
≤ exp

(
− 𝜖2

2𝐶2

4

∑
𝑖=1 𝑓𝑡 (\ ) + 2𝜖/3

)
⇒P

(�����∑︁
𝑡

[ ˆ𝑓𝑡 (\ ) − 𝑓𝑡 (\ )]
����� ≤ 𝜖

)
≥ 1 − 𝛿4, (76)

where in (76) we set 𝛿4 = exp

(
−𝜖2/(2𝐶2

4

∑
𝑖=1 𝑓𝑡 (\ ) + 2𝜖/3)

)
.

Next, we solve for 𝜖 from the equation exp

(
−𝜖2/(2𝐶2

4

∑
𝑖=1 𝑓𝑡 (\ ) + 2𝜖/3)

)
= 𝛿4:

exp

(
− 𝜖2

2𝐶2

4

∑
𝑖=1 𝑓𝑡 (\ ) + 2𝜖/3

)
= 𝛿4

𝜖2

2

∑
𝑖=1 𝑓𝑡 (\ ) + 2𝜖/3 = log(1/𝛿4)

log(1/𝛿4) (2𝐶2

4

∑︁
𝑖=1

𝑓𝑡 (\ ) + 2𝜖/3) = 𝜖2

𝜖2 − 2

3

log(1/𝛿4)𝜖 − 2𝐶2

4
log(1/𝛿4)

∑︁
𝑖=1

𝑓𝑡 (\ ) = 0 (77)

⇒
2

3
log(1/𝛿4) +

√︃
( 2
3
log(1/𝛿4))2 + 8𝐶2

4
log(1/𝛿4)

∑
𝑖=1 𝑓𝑡 (\ )

2

= 𝜖 (78)

⇒
2

3
log(1/𝛿4) + 2

3
log(1/𝛿4) + 2

√
2𝐶4

√︁
log(1/𝛿4)

∑
𝑖=1 𝑓𝑡 (\ )

2

≥ 𝜖 (79)

⇒ 2

3

log(1/𝛿4) +
√
2𝐶4

√︄
log(1/𝛿4)

∑︁
𝑖=1

𝑓𝑡 (\ ) ≥ 𝜖, (80)

where we solve the quadratic equation (77) in (78) and use the fact that

√
𝑎2 + 𝑏2 ≤ 𝑎 + 𝑏 for all 𝑎, 𝑏 ≥ 0 in (79).

Finally, combining (80) and (76), we can show that the following inequality holds with probability 1 − 𝛿4:�����∑︁
𝑡

[ ˆ𝑓𝑡 (\ ) − 𝑓𝑡 (\ )]
����� ≤ 2

3

log(1/𝛿4) +
√
2𝐶4

√︄
log(1/𝛿4)

∑︁
𝑖=1

𝑓𝑡 (\ ) (81)

□

Lemma 5.6. Under conditions specified in Theorem 3.4, if ∥\∗ − \0∥ ≤ 𝜏 where \0 and 𝜏 are chosen based on (7), then for time index 𝑡1, the
following inequality holds with probability at least 1 − O(𝑇 −2):

Γ𝑡1 ≤ 𝑡1A1 (𝑚, 𝑡1)2 +
√
𝑡1 log𝑇𝜎A1 (𝑚, 𝑡1) . (82)

Furthermore, when A0 (𝑡1) < 1

3
𝛽min, we have Γ𝑡1 = 0.

Proof. Since
ˆ\ is the optimal solution for (7) and \∗ is a feasible solution, we have

Γ𝑡1 ≤ max

{
0,

𝑡1∑︁
𝑡

|𝑧⊤𝑡 \∗ − 𝑦𝑡 |2 − 𝜖2𝑡

}
= max

{
0,

𝑡1∑︁
𝑡

|𝑧⊤𝑡 \∗ − 𝑥⊤𝑡 𝛽∗ − 𝜖𝑡 |2 − 𝜖2𝑡

}
= max

{
0,

𝑡1∑︁
𝑡

|𝑧⊤𝑡 \∗ − 𝑥⊤𝑡 𝛽∗ |2 − 2𝜖𝑡 |𝑧⊤𝑡 \ − 𝑥⊤𝑡 𝛽∗ |
}

= max

{
0,

𝑡1∑︁
𝑡

|𝑥⊤𝑡 (Σ − 𝐼 )𝛽∗ |2 − 2𝜖𝑡 |𝑥⊤𝑡 (Σ − 𝐼 )𝛽∗ |
}

≤ max

{
0, 𝑡1A1 (𝑚, 𝑡1)2 − 2

𝑡1∑︁
𝑡

𝜖𝑡 |𝑥⊤𝑡 (Σ − 𝐼 )𝛽∗ |)
}
, (83)

where (83) uses Theorem 3.4.
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From Hoeffding inequality and Theorem 3.4, we know that the following inequality holds for 𝛼 > 0

P

(����� 𝑡1∑︁
𝑡

𝜖𝑡 |𝑥⊤𝑡 (Σ − 𝐼 )𝛽∗ |
����� ≥ 𝛼

)
≤ 2 exp

(
− 2𝛼2

𝑡1𝜎
2A1 (𝑚,𝑇1)2

)
Setting 𝛼 =

√
𝑡1 log𝑇𝜎A1 (𝑚, 𝑡1), we have

P

(
2

𝑡1∑︁
𝑡

𝜖𝑡 ∥𝑥𝑡 (Σ − 𝐼 )𝛽∗∥ ≥
√
𝑡1 log𝑇𝜎A1 (𝑚, 𝑡1)

)
≤ O(𝑇 −2) (84)

Accordingly, the inequality stated in Lemma 5.6 directly follows from (84) and (83). Finally, as A1 (𝑚, 𝑡1) = 0 for A0 (𝑡1) < 1

3
𝛽min, we can

conclude that Γ𝑡1 = 0 in the data-rich regime. □

Lemma 5.7. Let 𝑧max = max𝑡 ∥𝑧𝑡 ∥, 𝑛𝑡1 ≥ O
(
(𝑠 +𝑚)2`−1 log𝑇

)
with 𝑡1 > 0 and ` > 0. If E[𝑧⊤𝑡 𝑧𝑡 ] ⪰ ` for all 𝑡 , then with probability at least

1 − O(𝑇 −2), we have
𝑡1∑︁
𝑡=1

𝑧⊤𝑡 𝑧𝑡 ⪰ 1

2

`𝑛𝑡1 𝐼 . (85)

Proof. Since 𝑧⊤𝑡 𝑧𝑡 is always positive semidefinite, we will have

𝑡1∑︁
𝑡=1

𝑧⊤𝑡 𝑧𝑡 ⪰
𝑡1∑︁

𝑡 ∈random sample

𝑧⊤𝑡 𝑧𝑡 . (86)

We then use the Matrix Chernoff inequalities (e.g., Theorem 5.1.1 in [58]):

P
©«_min

©«
𝑡1∑︁

𝑡 ∈random sample

𝑧⊤𝑡 𝑧𝑡
ª®¬ ≤ (1 − 𝛿)`min

ª®¬ ≤ (𝑠 +𝑚)
(

𝑒−𝛿

(1 − 𝛿)1−𝛿

)`min/𝑅

, (87)

where `min ≤ _min

(∑𝑡1
𝑡 ∈random sample

E[𝑧⊤𝑡 𝑧𝑡 ]
)
and 𝑅 ≥ _max (𝑧⊤𝑡 𝑧𝑡 ) for all 𝑡 . Since vector 𝑧 is at most 𝑠 +𝑚 dimension and ∥𝑧∥ ≤ 𝑧max, we

have

E[𝑧⊤𝑡 𝑧𝑡 ] ⪯ (𝑠 +𝑚)𝑧2
max

𝐼 , (88)

and

_min

©«
𝑡1∑︁

𝑡 ∈random sample

E[𝑧⊤𝑡 𝑧𝑡 ]
ª®¬ ≥

𝑡1∑︁
𝑡 ∈random sample

_min (E[𝑧⊤𝑡 𝑧𝑡 ]) = 𝑛𝑡1`. (89)

Thus, we can set `min := 𝑛𝑡1` and 𝑅 := (𝑠 +𝑚)𝑧2
max

. If we pick 𝛿 = 1/2, we then have

P
©«_min

©«
𝑡1∑︁

𝑖∈random sample

𝑧⊤𝑡 𝑧𝑡
ª®¬ ≤ 1

2

𝑛𝑡1`
ª®¬ ≤ (𝑠 +𝑚)

(
𝑒−1/2

(1/2)1/2

)𝑛𝑡
1
`/(𝑠+𝑚)𝑧2

max

⇒P ©«
𝑡1∑︁

𝑖∈random sample

𝑧⊤𝑡 𝑧𝑡 ⪰ 1

2

𝑛𝑡1`
ª®¬ ≤ (𝑠 +𝑚)

(
𝑒−1/2

(1/2)1/2

)𝑛𝑡
1
`/(𝑠+𝑚)𝑧2

max

.

The remaining part follows by using 𝑛𝑡1 ≥ 2(𝑠+𝑚)𝑧2
max

(2 log𝑇−log(𝑠+𝑚) )
` log(𝑒/2) = O((𝑠 +𝑚)2 log𝑇 /`). □

Lemma 5.8. Under the Random Decay Sampling Scheme with 𝑃𝑐0,𝑐1 (𝑡) = min {1, 𝑐0𝑡−𝑐1 }, where 𝑐0 > 0, 𝑐1 ∈ (0, 1), the following statement

holds for 𝑡 > max

{
𝑐
1/𝑐1
0

,

(
20

𝑐0
log𝑇

) 1

1−𝑐
1

}
:

P(𝑛𝑡 = O(𝑐0𝑡1−𝑐1 )) ≥ 1 − 1

𝑇 2
. (90)

Proof. Up to time 𝑡 , the expected total number of random decisions is

E[𝑛𝑡 ] =
𝑡∑︁

𝑡=1

min

{
1, 𝑐0𝑡

−𝑐1 } . (91)
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When 𝑡 ≥ ⌊𝑐1/𝑐1
0

+ 1⌋ := 𝑡0, we can show that

E[𝑛𝑡 ] = 𝑡0 + 𝑐0
𝑡∑︁

𝑖=𝑡0

[
𝑖−𝑐1

]
⇒

𝑡∑︁
𝑖=𝑡0

𝑖−𝑐1 ≤ E[𝑛𝑡 ] − 𝑡0
𝑐0

≤
𝑡∑︁

𝑖=𝑡0

2𝑖−𝑐1 (92)

It is directly to show that for any 𝑐1 ∈ (0, 1), we have

(𝑡 − 1)1−𝑐1 − (𝑡0 − 1)1−𝑐1 ≤
𝑡∑︁

𝑖=𝑡0

𝑖−𝑐1 ≤ 𝑡1−𝑐1 − 𝑡1−𝑐1
0

. (93)

Accordingly, we can show that

(𝑡 − 1)1−𝑐1 − (𝑡0 − 1)1−𝑐1 ≤ E[𝑛𝑡 ] − 𝑡0
𝑐0

≤ 2(𝑡1−𝑐1 − 𝑡1−𝑐1
0

)

⇒ 𝑡0 + 𝑐0 ((𝑡 − 1)1−𝑐1 − (𝑡0 − 1)1−𝑐1 ) ≤ E[𝑛𝑡 ] ≤ 𝑡0 + 2𝑐0 (𝑡1−𝑐1 − 𝑡1−𝑐1
0

). (94)

Via Chernoff bound, we have

P

(
1

2

E[𝑛𝑡 ] ≤ 𝑛𝑡 ≤ 3

2

E[𝑛𝑡 ]
)
≥ 1 − 2 exp

(
− 1

10

E[𝑛𝑡 ]
)
. (95)

Combining (95) with (94), we can conclude that

P

(
1

2

(
𝑡0 + 𝑐0 ((𝑡 − 1)1−𝑐1 − (𝑡0 − 1)1−𝑐1 )

)
≤ 𝑛𝑡 ≤ 3

2

(
2𝑐0 (𝑡1−𝑐1 − 𝑡1−𝑐1

0
) + 𝑡0

))
≥ 1 − 2 exp

(
− 1

10

(
𝑡0 + 𝑐0 ((𝑡 − 1)1−𝑐1 − (𝑡0 − 1)1−𝑐1 )

))
⇒P(𝑛𝑡 = O(𝑐0𝑡1−𝑐1 )) ≥ 1 − 2 exp(− 𝑐0

10

(𝑡 − 1)1−𝑐1 ). (96)

Then when 𝑡 >

(
20

𝑐0
log𝑇

) 1

1−𝑐
1

, (96) implies

P(𝑛𝑡 = O(𝑐0𝑡1−𝑐1 )) ≥ 1 − 1

𝑇 2
. (97)

□

Lemma 5.9. Let ˆ𝛽 be the Lasso solution to (2), ˆ\ be the solution to (7), and \0 = argmin ∥\ − 𝑃0𝑄 ˆ𝛽 ∥. Under the same conditions as in Theorem
3.4, if we set 𝑛𝑇 = ˜O(𝑇 2/3) and 𝜏 = ˜O(𝑇 −1/3), then we have ∥ ˆ\ − \∗∥ ≤ ˜O(𝑇 −1/3).

Proof. We first use the triangle inequality:

∥ ˆ\ − \∗∥ ≤ ∥ ˆ\ − \0∥ + ∥\0 − 𝑃0𝑄 ˆ𝛽 ∥ + ∥𝑃0𝑄 ˆ𝛽 − \∗∥

≤ ∥ ˆ\ − \0∥ + 2∥\∗ − 𝑃0𝑄 ˆ𝛽 ∥

≤ ∥ ˆ\ − \0∥ + 2∥𝑃0𝑄𝛽∗ − 𝑃0𝑄 ˆ𝛽 ∥

≤ 𝜏 + 2∥𝑃0𝑄 (𝛽∗ − ˆ𝛽)∥,

where the second inequality uses the fact that \0 is the optimal solution to min ∥\ − 𝑃0𝑄 ˆ𝛽 ∥, the third inequality uses the definition of \∗,
and the last inequality uses the fact that ∥ ˆ\ − \0∥ ≤ 𝜏 for all local regression solutions.

As we require 𝜏 = ˜O(𝑇 −1/3), the remaining task is to show that ∥𝑃0𝑄 (𝛽∗ − ˆ𝛽)∥ = O(𝑇 −1/3). In the statement of Theorem 3.4, we assume

that the condition E𝑟𝑝 (𝑚,𝑑, 1) holds. Combining this condition with the fact that𝑄 is a permutation matrix that won’t change the magnitude,

we can show the following inequality:

∥𝑃0𝑄 (𝛽∗ − ˆ𝛽)∥ ≤ 2∥𝑄 (𝛽∗ − ˆ𝛽)∥ = 2∥𝛽∗ − ˆ𝛽 ∥ ≤ 2A0 (𝑇 ), (98)

where the last inequality we use the E𝑙𝑎𝑠𝑠𝑜 (𝑇 ). Under the condition that𝑛𝑇 = ˜O(𝑇 2/3), it is direct to show thatA0 (𝑇 ) =
√︁
(log𝑑 + log𝑇 )/𝑛𝑇 =

˜O(𝑇 −1/3), which completes the proof. □
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